Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
Nucleic Acids Res. 2013 Apr;41(7):e77. doi: 10.1093/nar/gkt002. Epub 2013 Jan 25.
Growth and differentiation of multicellular systems is orchestrated by spatially restricted gene expression programs in specialized subpopulations. The targeted manipulation of such processes by synthetic tools with high-spatiotemporal resolution could, therefore, enable a deepened understanding of developmental processes and open new opportunities in tissue engineering. Here, we describe the first red/far-red light-triggered gene switch for mammalian cells for achieving gene expression control in time and space. We show that the system can reversibly be toggled between stable on- and off-states using short light pulses at 660 or 740 nm. Red light-induced gene expression was shown to correlate with the applied photon number and was compatible with different mammalian cell lines, including human primary cells. The light-induced expression kinetics were quantitatively analyzed by a mathematical model. We apply the system for the spatially controlled engineering of angiogenesis in chicken embryos. The system's performance combined with cell- and tissue-compatible regulating red light will enable unprecedented spatiotemporally controlled molecular interventions in mammalian cells, tissues and organisms.
多细胞系统的生长和分化是由专门亚群中空间受限的基因表达程序协调的。通过具有高时空分辨率的合成工具对这些过程进行靶向操作,可以深入了解发育过程并为组织工程开辟新的机会。在这里,我们描述了第一个用于哺乳动物细胞的红/远红光触发基因开关,以实现时间和空间上的基因表达控制。我们表明,该系统可以使用 660 或 740nm 的短光脉冲在稳定的开和关状态之间可逆切换。已经表明,红光诱导的基因表达与施加的光子数相关,并且与不同的哺乳动物细胞系(包括人原代细胞)兼容。通过数学模型对光诱导的表达动力学进行了定量分析。我们将该系统应用于鸡胚中血管生成的空间控制工程。该系统的性能与细胞和组织兼容的调节红光相结合,将能够在哺乳动物细胞、组织和生物体中进行前所未有的时空控制分子干预。