Department of Neurobiology, Stanford University School of Medicine, Stanford, California, USA.
Nat Biotechnol. 2009 Oct;27(10):941-5. doi: 10.1038/nbt.1569. Epub 2009 Oct 4.
Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.
蛋白质-蛋白质相互作用对于许多细胞过程都是必不可少的。我们开发了一种称为光激活二聚化(LAD)的技术,可使用光在活细胞中人工诱导蛋白质异二聚体和同二聚体。我们使用拟南芥的FKF1 和 GIGANTEA(GI)蛋白,生成了其相互作用受蓝光控制的蛋白质标签。我们用 LAD 构建体证明了该系统的实用性,该构建体能募集质膜上的小 G 蛋白 Rac1,并响应聚焦照射诱导局部形成片状伪足。我们还通过将 GI 和 FKF1 的结构域分别融合到 Gal4 的 DNA 结合域和 VP16 的转录激活域,生成了光激活转录因子,表明该技术易于适应其他系统。这些研究为开发光调控信号分子奠定了基础,这些信号分子可用于控制受体激活、突触形成和生物体中的其他信号事件。