Suppr超能文献

植物光敏色素相互作用解读光和温度信号。

Plant Phytochrome Interactions Decode Light and Temperature Signals.

作者信息

Yi Chengwei, Gerken Uwe, Tang Kun, Philipp Michael, Zurbriggen Matias D, Köhler Jürgen, Möglich Andreas

机构信息

Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.

Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany.

出版信息

Plant Cell. 2024 Sep 11;36(12):4819-39. doi: 10.1093/plcell/koae249.

Abstract

Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.

摘要

植物光敏色素感知红光和远红光,以引发对不断变化的环境的适应性变化。下游的生理反应围绕红光诱导的与光敏色素相互作用因子(PIF)的相互作用展开。由于从光适应的Pfr状态到暗适应的Pr状态的热逆转对温度有明显的依赖性,光敏色素还兼具温度感受器的功能。在这里,我们评估温度感受是否可能扩展到光敏色素:PIF相互作用。虽然拟南芥光敏色素B(PhyB)与几种光敏色素相互作用因子(PIF)变体之间的结合会随着温度适度加速,但解离的加速程度更大,从而导致光敏色素:PIF复合物的净稳定性下降。PIF3和PIF6明显不同的温度曲线可能是植物分层温度反应的基础。偶然地,我们发现了一种在强连续光照下的光感受机制,其中光敏色素:PIF复合的程度随着红光强度的增加而降低,而不是增加。数学建模使这种衰减机制合理化,并将其与快速的红光驱动的Pr⇄Pfr相互转化以及Pr中的复合物解离联系起来。改变光敏色素的丰度,例如在昼夜和发育周期中,以及相互作用动力学,例如在不同的PIF之间,会改变衰减的性质和程度,从而使光反应曲线比仅由光敏色素Pr⇄Pfr相互转化时更具可塑性。我们的数据和分析揭示了一种对植物生理学、光遗传学和生物技术应用有影响的光感受机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91d3/11638003/cfe74df9163c/koae249f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验