Oxford Outcomes Ltd, Oxford, UK.
BMJ Open. 2013 Jan 24;3(1):e001309. doi: 10.1136/bmjopen-2012-001309.
Evidence synthesis is an integral part decision-making by reimbursement agencies. When direct evidence is not available, network-meta-analysis (NMA) techniques are commonly used. This approach assumes that the trials are sufficiently similar in terms of treatment-effect modifiers. When imbalances in potential treatment-effect modifiers exist, the NMA approach may not produce fair comparisons. The objective of this study was to identify and quantify the interaction between treatment-effect and potential treatment-effect modifiers, including time-of-response measurement and baseline viral load in chronic hepatitis B (CHB) patients.
Retrospective patient-level data econometric analysis.
1353 individuals from two randomised controlled trials of nucleoside-naïve CHB taking 0.5 mg entecavir (n=679) or 100 mg lamivudine (n=668) daily for 48 weeks.
Hepatitis B virus (HBV) DNA levels for both drugs were measured at baseline and weeks 24, 36 and 48. Generalised estimating equation for repeated binary responses was used to identify treatment-effect modifiers for response defined at ≤400 or ≤300 copies/ml.
OR at 48 weeks.
The OR for the time-of-response measurement and treatment-effect interaction term was 1.039 (p=0.00) and 1.035 (p=0.00) when response was defined at ≤400 or ≤300 copies/ml, respectively. The baseline HBV DNA and treatment-effect interaction OR was 0.94 (p=0.047) and 0.95 (p=0.096), respectively, for the two response definitions suggesting evidence of interaction between baseline disease activity and treatment effect. The interaction between HBeAg status and treatment effect was not statistically significant.
The measurement time point seems to modify the relative treatment effect of entacavir compared to lamivudine, measured on the OR scale. Evidence also suggested that differences in baseline viral load may also alter relative treatment effect. Meta-analyses should account for such modifiers when generating relative efficacy estimates.
证据综合是决策制定的一个组成部分,而决策制定由报销机构负责。当没有直接证据时,通常使用网络荟萃分析(NMA)技术。这种方法假设试验在治疗效果修正因素方面足够相似。当潜在的治疗效果修正因素存在不平衡时,NMA 方法可能无法产生公平的比较。本研究的目的是确定并量化治疗效果和潜在治疗效果修正因素之间的相互作用,包括慢性乙型肝炎(CHB)患者的反应时间测量和基线病毒载量。
回顾性患者水平数据计量经济学分析。
来自两项核苷初治 CHB 随机对照试验的 1353 名个体,每日分别服用恩替卡韦 0.5mg(n=679)或拉米夫定 100mg(n=668),共 48 周。
两种药物的乙型肝炎病毒(HBV)DNA 水平在基线和第 24、36 和 48 周进行测量。使用广义估计方程对重复二项反应进行分析,以确定反应定义为≤400 或≤300 拷贝/ml 时的治疗效果修正因素。
48 周时的比值比(OR)。
当反应定义为≤400 或≤300 拷贝/ml 时,时间测量和治疗效果交互作用项的 OR 分别为 1.039(p=0.00)和 1.035(p=0.00)。基线 HBV DNA 和治疗效果交互作用项的 OR 分别为 0.94(p=0.047)和 0.95(p=0.096),提示基线疾病活动度和治疗效果之间存在交互作用的证据。HBeAg 状态与治疗效果之间的交互作用无统计学意义。
测量时间点似乎会改变与拉米夫定相比,恩替卡韦的相对治疗效果,这种效果是通过比值比(OR)来衡量的。证据还表明,基线病毒载量的差异也可能改变相对治疗效果。在生成相对疗效估计值时,荟萃分析应该考虑到这些修正因素。