Department of Evolutionary Studies of Biosystems and Hayama Center for Advanced Studies, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
Evolution. 2013 Feb;67(2):355-67. doi: 10.1111/j.1558-5646.2012.01775.x. Epub 2012 Sep 17.
Phylogenetic comparative methods (PCMs) have been used to test evolutionary hypotheses at phenotypic levels. The evolutionary modes commonly included in PCMs are Brownian motion (genetic drift) and the Ornstein-Uhlenbeck process (stabilizing selection), whose likelihood functions are mathematically tractable. More complicated models of evolutionary modes, such as branch-specific directional selection, have not been used because calculations of likelihood and parameter estimates in the maximum-likelihood framework are not straightforward. To solve this problem, we introduced a population genetics framework into a PCM, and here, we present a flexible and comprehensive framework for estimating evolutionary parameters through simulation-based likelihood computations. The method does not require analytic likelihood computations, and evolutionary models can be used as long as simulation is possible. Our approach has many advantages: it incorporates different evolutionary modes for phenotypes into phylogeny, it takes intraspecific variation into account, it evaluates full likelihood instead of using summary statistics, and it can be used to estimate ancestral traits. We present a successful application of the method to the evolution of brain size in primates. Our method can be easily implemented in more computationally effective frameworks such as approximate Bayesian computation (ABC), which will enhance the use of computationally intensive methods in the study of phenotypic evolution.
系统发育比较方法 (PCM) 已被用于在表型水平上检验进化假说。PCM 中通常包含的进化模式有布朗运动(遗传漂变)和奥恩斯坦-乌伦贝克过程(稳定选择),其似然函数在数学上是可处理的。更复杂的进化模式模型,如特定分支的定向选择,尚未被使用,因为在最大似然框架中计算似然和参数估计并不简单。为了解决这个问题,我们将群体遗传学框架引入到 PCM 中,这里我们提出了一个灵活而全面的框架,通过基于模拟的似然计算来估计进化参数。该方法不需要解析似然计算,只要可以模拟,就可以使用进化模型。我们的方法有许多优点:它将不同的进化模式纳入到表型的系统发育中,考虑了种内变异,评估了完整的似然,而不是使用摘要统计,并且可以用于估计祖先特征。我们成功地将该方法应用于灵长类动物大脑大小的进化研究中。我们的方法可以很容易地在更有效的计算框架(如近似贝叶斯计算(ABC))中实现,这将增强在表型进化研究中对计算密集型方法的使用。