Suppr超能文献

用于系统发育树上数量性状模型的高效循环算法

Efficient Recycled Algorithms for Quantitative Trait Models on Phylogenies.

作者信息

Hiscott Gordon, Fox Colin, Parry Matthew, Bryant David

机构信息

Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand.

Department of Physics, University of Otago, Dunedin, New Zealand.

出版信息

Genome Biol Evol. 2016 May 12;8(5):1338-50. doi: 10.1093/gbe/evw064.

Abstract

We present an efficient and flexible method for computing likelihoods for phenotypic traits on a phylogeny. The method does not resort to Monte Carlo computation but instead blends Felsenstein's discrete character pruning algorithm with methods for numerical quadrature. It is not limited to Gaussian models and adapts readily to model uncertainty in the observed trait values. We demonstrate the framework by developing efficient algorithms for likelihood calculation and ancestral state reconstruction under Wright's threshold model, applying our methods to a data set of trait data for extrafloral nectaries across a phylogeny of 839 Fabales species.

摘要

我们提出了一种高效且灵活的方法,用于计算系统发育树上表型性状的似然性。该方法不依赖蒙特卡罗计算,而是将费尔斯滕森的离散性状剪枝算法与数值求积方法相结合。它不限于高斯模型,并且能轻松适应观测到的性状值中的模型不确定性。我们通过开发用于在赖特阈值模型下进行似然性计算和祖先状态重建的高效算法来展示该框架,并将我们的方法应用于839种豆目植物系统发育树上花外蜜腺性状数据的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebd/4898791/8c9ace273a82/evw064f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验