Suppr超能文献

随机传染病中参数族混合的随机比较。

Stochastic comparisons of mixtures of parametric families in stochastic epidemics.

机构信息

Res. Univ. Oblts., 30001 Murcia, Spain.

出版信息

Math Biosci. 2013 May;243(1):18-27. doi: 10.1016/j.mbs.2012.12.006. Epub 2013 Jan 25.

Abstract

The paper is first concerned with the stochastic comparisons for mixed Erlang random variables when the arbitrary mixing distributions are ordered by increasing directionally convex order or an univariate ordering. Similar results for mixtures of gamma, lognormal, geometric and Poisson families are given. The main results are applied for the analysis of the effect of the positive correlation and the variation of the parameters of some measures in stochastic epidemics, that are mixtures of parametric families as earlier with environmental parameters, arising from extensions that we provide of the SEIR model with vaccination and isolation for structured populations by [2] and the SIR model with term-time forcing, by [11]. Unlike the previous stochastic epidemic models, we consider parameter uncertainty with arbitrary mixing distributions, and stochastic dependencies among them. We rank the probabilities that the severity (active severity) of the epidemic in the household after the first removal exceeds a fixed level conditioning on a threshold parameter, we bound the expected value of increasing convex functions of the severity (active severity), we calculate and compare the basic reproduction numbers, for the SEIR model with vaccination and isolation; and in addition, we bound the number of type-i individuals infected from type-i infectives and the times until either a recovery or a state change happens, for the SIR model with term-time forcing. Using the positive quadrant dependence of the parameter vector, the mixture models are compared with models having the same marginal distributions for the mixing variables but independent components. They assess on the development of some public health policies (vaccination, household isolation, other structuring patterns).

摘要

本文首先关注了在任意混合分布按递增方向凸序或单变量序排列的情况下,混合 Erlang 随机变量的随机比较。给出了伽马、对数正态、几何和泊松族混合的类似结果。主要结果应用于分析正相关的影响和随机传染病中某些度量的参数变化,这些度量是之前具有环境参数的参数族的混合物,是我们通过[2]对具有疫苗接种和隔离的 SEIR 模型和通过[11]对具有期限时间强迫的 SIR 模型的扩展。与以前的随机传染病模型不同,我们考虑了具有任意混合分布和随机依赖性的参数不确定性。我们对家庭中传染病严重程度(活跃严重程度)在第一次清除后超过固定水平的概率进行排序,条件是阈值参数,我们对严重程度(活跃严重程度)的递增凸函数的期望值进行约束,我们计算和比较了具有疫苗接种和隔离的 SEIR 模型的基本繁殖数;此外,我们对具有期限时间强迫的 SIR 模型中从第-i 感染源感染第-i 感染源的个体数量和直到发生恢复或状态变化的时间进行了约束。使用参数向量的正象限相关性,将混合模型与具有相同混合变量边缘分布但独立分量的模型进行了比较。它们评估了一些公共卫生政策(疫苗接种、家庭隔离、其他结构模式)的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验