Suppr超能文献

为活体人群和计算机网络构建传染病模型。

Building epidemic models for living populations and computer networks.

机构信息

Private Practice, Istanbul, Turkey.

Kalabak Mah., Urla, Izmir, Turkey.

出版信息

Sci Prog. 2021 Apr-Jun;104(2):368504211017800. doi: 10.1177/00368504211017800.

Abstract

Accurate modeling of viral outbreaks in living populations and computer networks is a prominent research field. Many researchers are in search for simple and realistic models to manage preventive resources and implement effective measures against hazardous circumstances. The ongoing Covid-19 pandemic has revealed the fact about deficiencies in health resource planning of some countries having relatively high case count and death toll. A unique epidemic model incorporating stochastic processes and queuing theory is presented, which was evaluated by computer simulation using pre-processed data obtained from an urban clinic providing family health services. Covid-19 data from a local corona-center was used as the initial model parameters (e.g. , infection rate, local population size, number of contacts with infected individuals, and recovery rate). A long-run trend analysis for 1 year was simulated. The results fit well to the current case data of the sample corona center. Effective preventive and reactive resource planning basically depends on accurately designed models, tools, and techniques needed for the prediction of feature threats, risks, and mitigation costs. In order to sufficiently analyze the transmission and recovery dynamics of epidemics it is important to choose concise mathematical models. Hence, a unique stochastic modeling approach tied to queueing theory and computer simulation has been chosen. The methods used here can also serve as a guidance for accurate modeling and classification of stages (or compartments) of epidemics in general.

摘要

准确地对生物群体和计算机网络中的病毒爆发进行建模是一个突出的研究领域。许多研究人员正在寻找简单而现实的模型,以管理预防资源并采取有效措施应对危险情况。正在进行的新冠疫情揭示了一些国家在卫生资源规划方面存在的缺陷,这些国家的病例数和死亡率相对较高。本文提出了一种独特的结合了随机过程和排队论的传染病模型,该模型使用从提供家庭健康服务的城市诊所获得的预处理数据通过计算机模拟进行了评估。使用当地冠状病毒中心的新冠数据作为初始模型参数(例如,感染率、当地人口规模、与感染者接触的人数以及康复率)。模拟了为期 1 年的长期趋势分析。结果与样本冠状病毒中心的当前病例数据吻合较好。有效的预防和反应性资源规划基本上取决于准确设计的模型、工具和技术,这些模型、工具和技术用于预测特征威胁、风险和缓解成本。为了充分分析传染病的传播和恢复动态,选择简洁的数学模型非常重要。因此,选择了一种独特的与排队论和计算机模拟相关的随机建模方法。这里使用的方法也可以作为一般传染病阶段(或隔室)的准确建模和分类的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验