Suppr超能文献

管理式问题解决治疗艾滋病病毒治疗依从性:一项随机试验。

Managed problem solving for antiretroviral therapy adherence: a randomized trial.

机构信息

Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6021, USA.

出版信息

JAMA Intern Med. 2013 Feb 25;173(4):300-6. doi: 10.1001/jamainternmed.2013.2152.

Abstract

BACKGROUND

Adherence to antiretroviral therapy is critical to successful treatment of human immunodeficiency virus (HIV). Few interventions have been demonstrated to improve both adherence and virologic outcomes. We sought to determine whether an intervention derived from problem solving theory, Managed Problem Solving (MAPS), would improve antiretroviral outcomes.

METHODS

We conducted a randomized investigator blind trial of MAPS compared with usual care in HIV-1 infected individuals at 3 HIV clinics in Philadelphia, Pennsylvania. Eligible patients had plasma HIV-1 viral loads greater than 1000 copies/mL and were initiating or changing therapy. Managed Problem Solving consists of 4 in-person and 12 telephone-based meetings with a trained interventionist, then monthly follow-up calls for a year. Primary outcome was medication adherence measured using electronic monitors, summarized as fraction of doses taken quarterly over 1 year. Secondary outcome was undetectable HIV viral load over 1 year. We assessed 218 for eligibility, with 190 eligible and 180 enrolled, 91 randomized to MAPS and 89 to usual care. Fifty-six participants were lost to follow-up: 33 in the MAPS group and 23 in usual care group.

RESULTS

In primary intention-to-treat analyses, the odds of being in a higher adherence category was 1.78 (95% CI,1.07-2.96) times greater for MAPS than usual care. In secondary analyses, the odds of an undetectable viral load was 1.48 (95% CI, 0.94-2.31) times greater for MAPS than usual care. In as-treated analyses, the effect of MAPS was stronger for both outcomes. There was neither a difference by prior treatment status nor change in effect over time.

CONCLUSIONS

Managed Problem Solving is an effective antiretroviral adherence intervention over the first year with a new regimen. It was equally effective at improving adherence in treatment experienced and naïve patients and did not lose effect over time. Implementation of MAPS should be strongly considered where resources are available.

TRIAL REGISTRATION

clinicaltrials.gov Identifier: NCT00130273.

摘要

背景

抗逆转录病毒治疗的依从性对于人类免疫缺陷病毒(HIV)的成功治疗至关重要。很少有干预措施被证明可以同时改善依从性和病毒学结果。我们试图确定一种源自问题解决理论的干预措施,即管理式问题解决(MAPS),是否会改善抗逆转录病毒的结果。

方法

我们在宾夕法尼亚州费城的 3 家 HIV 诊所进行了一项随机、研究者盲法试验,比较了 MAPS 与常规护理对 HIV-1 感染个体的影响。合格的患者血浆 HIV-1 病毒载量大于 1000 拷贝/ml,正在开始或改变治疗方案。管理式问题解决包括 4 次面对面会议和 12 次电话会议,由经过培训的干预者进行,然后在接下来的 1 年中每月进行随访电话。主要结局是使用电子监测器测量的药物依从性,在 1 年内每季度服药剂量的分数进行总结。次要结局是在 1 年内检测不到 HIV 病毒载量。我们评估了 218 名符合条件的患者,其中 190 名符合条件,180 名入组,91 名被随机分配到 MAPS 组,89 名被分配到常规护理组。有 56 名参与者失访:MAPS 组 33 名,常规护理组 23 名。

结果

在主要的意向治疗分析中,与常规护理相比,MAPS 组的更高依从性类别(95%置信区间,1.07-2.96)的可能性高 1.78 倍。在次要分析中,与常规护理相比,MAPS 组检测不到病毒载量的可能性高 1.48 倍(95%置信区间,0.94-2.31)。在按治疗方案分析中,MAPS 对这两个结局的效果都更强。MAPS 的效果在前次治疗状态方面没有差异,也没有随时间的推移而变化。

结论

在开始新方案的第一年,管理式问题解决是一种有效的抗逆转录病毒依从性干预措施。它在改善治疗经验和初治患者的依从性方面同样有效,而且随着时间的推移不会失去效果。在有资源的情况下,应强烈考虑实施 MAPS。

试验注册

clinicaltrials.gov 标识符:NCT00130273。

相似文献

3
Does managed problem solving work and in what setting?管理式问题解决是否有效,在何种环境下有效?
JAMA Intern Med. 2013 Aug 12;173(15):1474. doi: 10.1001/jamainternmed.2013.7788.
5
Reply: To PMID 23358784.回复:致PMID 23358784。
JAMA Intern Med. 2013 Aug 12;173(15):1475-6. doi: 10.1001/jamainternmed.2013.7782.

引用本文的文献

本文引用的文献

2
Full coverage for preventive medications after myocardial infarction.心肌梗死后的预防性药物全覆盖。
N Engl J Med. 2011 Dec 1;365(22):2088-97. doi: 10.1056/NEJMsa1107913. Epub 2011 Nov 14.
3
Prevention of HIV-1 infection with early antiretroviral therapy.早期抗逆转录病毒疗法预防 HIV-1 感染。
N Engl J Med. 2011 Aug 11;365(6):493-505. doi: 10.1056/NEJMoa1105243. Epub 2011 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验