Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2804-9. doi: 10.1073/pnas.1219701110. Epub 2013 Jan 28.
Multidrug-resistant Staphylococcus aureus infections pose a significant threat to human health. Antibiotic resistance is most commonly propagated by conjugative plasmids like pLW1043, the first vancomycin-resistant S. aureus vector identified in humans. We present the molecular basis for resistance transmission by the nicking enzyme in S. aureus (NES), which is essential for conjugative transfer. NES initiates and terminates the transfer of plasmids that variously confer resistance to a range of drugs, including vancomycin, gentamicin, and mupirocin. The NES N-terminal relaxase-DNA complex crystal structure reveals unique protein-DNA contacts essential in vitro and for conjugation in S. aureus. Using this structural information, we designed a DNA minor groove-targeted polyamide that inhibits NES with low micromolar efficacy. The crystal structure of the 341-residue C-terminal region outlines a unique architecture; in vitro and cell-based studies further establish that it is essential for conjugation and regulates the activity of the N-terminal relaxase. This conclusion is supported by a small-angle X-ray scattering structure of a full-length, 665-residue NES-DNA complex. Together, these data reveal the structural basis for antibiotic multiresistance acquisition by S. aureus and suggest novel strategies for therapeutic intervention.
耐多药金黄色葡萄球菌感染对人类健康构成重大威胁。抗生素耐药性最常见于可移动质粒的传播,如 pLW1043,它是人类中第一个鉴定出的耐万古霉素金黄色葡萄球菌载体。我们介绍了金黄色葡萄球菌(NES)中切口酶在耐药性传播中的分子基础,这对于可移动质粒的转移至关重要。切口酶可引发和终止不同耐药质粒的转移,这些质粒可赋予包括万古霉素、庆大霉素和莫匹罗星在内的多种药物的耐药性。切口酶 N 端解旋酶-DNA 复合物的晶体结构揭示了在体外和金黄色葡萄球菌中转移所必需的独特蛋白质-DNA 接触。利用该结构信息,我们设计了一种针对 DNA 小沟的聚酰胺,其对 NES 的抑制作用具有低微摩尔效力。341 个残基 C 端区域的晶体结构勾勒出独特的结构;体外和基于细胞的研究进一步证实,它对转移至关重要,并调节 N 端解旋酶的活性。全长 665 个残基 NES-DNA 复合物的小角度 X 射线散射结构支持这一结论。综上所述,这些数据揭示了金黄色葡萄球菌获得抗生素多药耐药性的结构基础,并为治疗干预提供了新的策略。