Molecular Discovery Research, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
Nature. 2010 Aug 19;466(7309):935-40. doi: 10.1038/nature09197. Epub 2010 Aug 4.
Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
尽管基因组学在识别新的必需细菌基因方面取得了成功,但在解决日益严重的多药耐药性问题方面,抗菌药物发现方面缺乏可持续的线索。IIA 型拓扑异构酶切割和连接 DNA 以调节 DNA 拓扑结构,是抗菌和抗癌药物的主要靶点之一,但对于理解药物作用的结构基础还没有很好的发展。在这里,我们报告了一种强效的新型广谱抗菌剂与金黄色葡萄球菌 DNA 回旋酶和 DNA 复合物的 2.1Å 晶体结构,显示了一种新的抑制模式,可以规避该临床上重要的药物靶标中的氟喹诺酮耐药性。抑制剂“桥接”了 DNA 和在二聚体界面的两倍轴上的瞬时非催化口袋,并且靠近活性位点和氟喹诺酮结合位点。在抑制剂复合物中,活性位点似乎准备好切割 DNA,在拓扑异构酶/引物(TOPRIM)结构域和易位磷酸之间观察到一个单金属离子。这项工作提供了拓扑异构酶作用机制的新见解,并为针对临床证明但构象灵活的酶类的新型抗菌剂的基于结构的药物设计提供了一个平台。