Suppr超能文献

贝叶斯自适应Ⅱ期联合试验筛选设计。

Bayesian adaptive phase II screening design for combination trials.

机构信息

Biostatistics/Epidemiology/Research Design Core, Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Clin Trials. 2013;10(3):353-62. doi: 10.1177/1740774512470316. Epub 2013 Jan 28.

Abstract

BACKGROUND

Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents.

METHODS

Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations.

RESULTS

Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments.

LIMITATIONS

The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated.

CONCLUSIONS

The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial.

摘要

背景

联合疗法治疗癌症的试验在对抗这种疾病的斗争中发挥着越来越重要的作用。为了更有效地处理必须测试的大量联合疗法,我们提出了一种新的贝叶斯二期自适应筛选设计,以便同时选择涉及多种药物的可能治疗组合。

方法

我们的设计基于将选择过程表述为一个贝叶斯假设检验问题,其中每个治疗组合的优势等同于一个单一的假设。在试验过程中,我们使用所有假设的后验概率的当前值来自适应地将患者分配到治疗组合中。

结果

模拟研究表明,所提出的设计大大优于传统的多臂平衡析因试验设计。与分配更多患者接受有效治疗相比,该设计显著提高了选择最佳治疗方法的概率。

局限性

所提出的设计最适合于联合多种药物的试验,并筛选出有效的组合进行进一步研究。

结论

所提出的贝叶斯自适应二期筛选设计大大优于传统的完全析因设计。我们的设计将更多的患者分配到更好的治疗方法,同时在试验结束时提供更高的能力来识别最佳治疗方法。

相似文献

1
Bayesian adaptive phase II screening design for combination trials.
Clin Trials. 2013;10(3):353-62. doi: 10.1177/1740774512470316. Epub 2013 Jan 28.
2
Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.
Pharm Stat. 2017 Mar;16(2):114-121. doi: 10.1002/pst.1793. Epub 2016 Nov 28.
4
BASIC: A Bayesian adaptive synthetic-control design for phase II clinical trials.
Clin Trials. 2023 Oct;20(5):486-496. doi: 10.1177/17407745231176445. Epub 2023 Jun 14.
5
A Bayesian phase I-II clinical trial design to find the biological optimal dose on drug combination.
J Biopharm Stat. 2024 Jul 3;34(4):582-595. doi: 10.1080/10543406.2023.2236208. Epub 2023 Jul 17.
6
A Bayesian response-adaptive dose-finding and comparative effectiveness trial.
Clin Trials. 2021 Feb;18(1):61-70. doi: 10.1177/1740774520965173. Epub 2020 Nov 24.
7
Phase I trial design for drug combinations with Bayesian model averaging.
Pharm Stat. 2015 Mar-Apr;14(2):108-19. doi: 10.1002/pst.1668. Epub 2015 Jan 13.
8
A parallel phase I/II clinical trial design for combination therapies.
Biometrics. 2007 Jun;63(2):429-36. doi: 10.1111/j.1541-0420.2006.00685.x.
10
Continuous Bayesian adaptive randomization based on event times with covariates.
Stat Med. 2006 Jan 15;25(1):55-70. doi: 10.1002/sim.2247.

引用本文的文献

1
Uncertainty directed factorial clinical trials.
Biostatistics. 2024 Jul 1;25(3):833-851. doi: 10.1093/biostatistics/kxad036.
3
Bayesian modeling and prediction of accrual in multi-regional clinical trials.
Stat Methods Med Res. 2017 Apr;26(2):752-765. doi: 10.1177/0962280214557581. Epub 2014 Nov 3.

本文引用的文献

1
Bayesian optimal design for phase II screening trials.
Biometrics. 2008 Sep;64(3):886-894. doi: 10.1111/j.1541-0420.2007.00951.x. Epub 2007 Dec 20.
2
Screening designs for drug development.
Biostatistics. 2007 Jul;8(3):595-608. doi: 10.1093/biostatistics/kxl031. Epub 2006 Oct 9.
3
Toward evidence-based medical statistics. 2: The Bayes factor.
Ann Intern Med. 1999 Jun 15;130(12):1005-13. doi: 10.7326/0003-4819-130-12-199906150-00019.
5
An optimal design for screening trials.
Biometrics. 1998 Mar;54(1):243-50.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验