Suppr超能文献

在铱钳形催化剂作用下,正己烷脱氢芳构化为苯的反应机理。

On the mechanism of the dehydroaromatization of hexane to benzene by an iridium pincer catalyst.

机构信息

Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

出版信息

Chemistry. 2013 Mar 18;19(12):4069-77. doi: 10.1002/chem.201204062. Epub 2013 Jan 31.

Abstract

The developments in the area of transition-metal pincer complexes have opened up new avenues for conversion of saturated hydrocarbons to more useful aromatic compounds under homogeneous reaction conditions. In the backdrop of an interesting series of conversions of unbranched alkanes to benzene, toluene, and xylene (known as the BTX family aromatics) reported by Goldman and co-workers (Nature Chem. 2011, 3, 167), we herein present a comprehensive mechanistic picture obtained by using density functional computations. The reaction involves an iridium-PCP-pincer-catalyzed dehydroaromatization of hexane to benzene (in which PCP=η(3) -C6 H3 (iPrP)2 -1,3) by using tert-butylethylene (TBE) as a sacrificial acceptor. The most energetically preferred pathway for a sequence of dehydrogenations is identified to begin with a terminal CH bond activation of n-hexane leading to the formation of hex-1-ene. Although the initial dehydrogenation of n-hexane was found to be endergonic, the accompanying exoergic hydrogenation of TBE to tert-butylethane (TBA) compensates the energetics to keep the catalytic cycle efficient. Subsequent dehydrogenations provide a hexa-1,3-diene and then a hexa-1,3,5-triene. The pincer bound triene is identified to undergo cyclization to furnish cyclohexadiene. Eventually, dehydrogenation of cyclohexa-1,3-diene offers benzene. In the most preferred pathway, the Gibbs free energy barrier for cyclization leading to the formation of cyclohexa-1,3-diene is found to exhibit the highest barrier (21.7 kcal mol(-1) ).

摘要

在过渡金属钳形配合物领域的发展为在均相反应条件下将饱和烃转化为更有用的芳烃开辟了新途径。在 Goldman 及其同事报道的一系列有趣的将直链烷烃转化为苯、甲苯和二甲苯(称为 BTX 芳烃家族)的转化反应的背景下,我们在此通过使用密度泛函计算呈现了一个全面的机理图。该反应涉及 Ir-PCP-钳形催化剂催化的正己烷脱氢芳构化为苯(其中 PCP=η(3) -C6 H3 (iPrP)2 -1,3),使用叔丁基乙烯(TBE)作为牺牲受体。确定了一系列脱氢反应中最具能量优势的途径,从正己烷的末端 CH 键活化开始,导致形成己-1-烯。尽管发现正己烷的初始脱氢是吸热的,但 TBE 向叔丁基乙烷(TBA)的伴随放热氢化补偿了能量,以保持催化循环的效率。随后的脱氢提供了六-1,3-二烯,然后是六-1,3,5-三烯。被钳形物束缚的三烯被鉴定为经历环化以提供环己二烯。最终,环己-1,3-二烯的脱氢提供苯。在最优选的途径中,形成环己-1,3-二烯的环化的吉布斯自由能垒被发现具有最高的垒(21.7 kcal mol(-1))。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验