Suppr超能文献

固相分子钳铱催化剂催化正构烷烃脱氢反应。高收率α-烯烃产物。

Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.

机构信息

†Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States.

§Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.

出版信息

J Am Chem Soc. 2015 Aug 12;137(31):9894-911. doi: 10.1021/jacs.5b05313. Epub 2015 Aug 4.

Abstract

We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.

摘要

我们报告了固相、分子、钳形配体铱催化剂催化的气相烷烃的转移脱氢反应,使用乙烯或丙烯作为氢受体。在固相下,具有空间位阻的钳形配体(如(iPr4)PCP)的铱配合物被发现可使正构烷烃脱氢反应具有极高的速率和周转数,并且末端脱氢产物(α-烯烃)的产率也远高于以前报道的溶液相实验。这些结果通过机理研究和 DFT 计算得到了解释,这些研究共同得出结论,即烯烃异构化,这限制了钳形 Ir 催化的烷烃脱氢反应中α-烯烃的产率,在((iPr4)PCP)Ir 的情况下,通过两种在机理上不同的途径进行。更常规的途径涉及α-烯烃插入((iPr4)PCP)IrH2 中的 Ir-H 键,然后进行 3,2-β-H 消除。使用乙烯作为氢受体或丙烯的高压通过二氢化物快速氢化这些小分子烯烃,排除了这条途径。第二种异构化途径通过α-烯烃 C-H 加成到(钳形)Ir 上进行,得到以前报道的((tBu4)PCP)Ir 中的烯丙基中间体。对控制速率和选择性的因素的更好理解导致了溶液相体系,提供了更高的α-烯烃产率,并为未来开发更活性和选择性的催化体系提供了所需的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验