Suppr超能文献

树突分支点形态的功能影响。

Functional impact of dendritic branch-point morphology.

机构信息

Center for Neural Informatics, Structures, and Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.

出版信息

J Neurosci. 2013 Jan 30;33(5):2156-65. doi: 10.1523/JNEUROSCI.3495-12.2013.

Abstract

Cortical pyramidal cells store multiple features of complex synaptic input in individual dendritic branches and independently regulate the coupling between dendritic and somatic spikes. Branch points in apical trees exhibit wide ranges of sizes and shapes, and the large diameter ratio between trunk and oblique dendrites exacerbates impedance mismatch. The morphological diversity of dendritic bifurcations could thus locally tune neuronal excitability and signal integration. However, these aspects have never been investigated. Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch points could drastically alter the ability of synaptic input to generate, propagate, and time action potentials.

摘要

皮质锥体细胞在单个树突分支中存储复杂突触输入的多个特征,并独立调节树突和体部尖峰之间的耦合。树突分支点的大小和形状差异很大,主干和斜突之间的大直径比加剧了阻抗失配。因此,树突分支的形态多样性可以局部调节神经元的兴奋性和信号整合。然而,这些方面从未被研究过。在这里,我们首先从大鼠 CA1 锥体神经元的双光子图像中量化了分支点的形态变异性。然后,我们使用通过谷氨酸非笼技术实验验证的计算模型研究了影响尖峰起始、传播和定时的几何特征。结果表明,即使分支点的微小膜调整也可能极大地改变突触输入产生、传播和定时动作电位的能力。

相似文献

1
Functional impact of dendritic branch-point morphology.
J Neurosci. 2013 Jan 30;33(5):2156-65. doi: 10.1523/JNEUROSCI.3495-12.2013.
3
Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons.
J Neurosci. 2020 Mar 25;40(13):2593-2605. doi: 10.1523/JNEUROSCI.2071-19.2020. Epub 2020 Feb 11.
4
The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.
J Neurosci. 2017 Mar 22;37(12):3276-3293. doi: 10.1523/JNEUROSCI.2219-16.2017. Epub 2017 Feb 17.
6
Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neurons.
Neuron. 2012 Sep 6;75(5):851-64. doi: 10.1016/j.neuron.2012.06.025.
7
Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.
Cell Mol Life Sci. 2012 Jan;69(1):75-88. doi: 10.1007/s00018-011-0769-4. Epub 2011 Jul 28.
8
Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons.
Nat Neurosci. 2009 Dec;12(12):1485-7. doi: 10.1038/nn.2428. Epub 2009 Nov 8.
9
On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons.
J Neurosci. 2004 Dec 8;24(49):11046-56. doi: 10.1523/JNEUROSCI.2520-04.2004.
10
Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
J Physiol. 1998 Mar 1;507 ( Pt 2)(Pt 2):441-62. doi: 10.1111/j.1469-7793.1998.441bt.x.

引用本文的文献

2
SLK is mutated in individuals with a neurodevelopmental disorder.
EBioMedicine. 2025 Jun;116:105725. doi: 10.1016/j.ebiom.2025.105725. Epub 2025 May 9.
3
Antibiotics-induced dysbiosis impacts dendritic morphology of adult mouse cortical interneurons.
Front Neuroanat. 2025 Mar 7;19:1557961. doi: 10.3389/fnana.2025.1557961. eCollection 2025.
4
Exploring the microbiota-gut-brain axis: impact on brain structure and function.
Front Neuroanat. 2025 Feb 12;19:1504065. doi: 10.3389/fnana.2025.1504065. eCollection 2025.
7
8
Semi-Automated Quantitative Evaluation of Neuron Developmental Morphology In Vitro Using the Change-Point Test.
Neuroinformatics. 2023 Jan;21(1):163-176. doi: 10.1007/s12021-022-09600-8. Epub 2022 Sep 7.
9
Emergence of synaptic organization and computation in dendrites.
Neuroforum. 2022 Feb 23;28(1):21-30. doi: 10.1515/nf-2021-0031. Epub 2021 Dec 31.
10
Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia.
Biol Psychiatry. 2022 Sep 15;92(6):460-469. doi: 10.1016/j.biopsych.2022.04.004. Epub 2022 Apr 21.

本文引用的文献

1
Conserved properties of dendritic trees in four cortical interneuron subtypes.
Sci Rep. 2011;1:89. doi: 10.1038/srep00089. Epub 2011 Sep 13.
2
Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites.
Cell. 2012 Jan 20;148(1-2):309-21. doi: 10.1016/j.cell.2011.11.056.
3
4
Experience-dependent structural plasticity in the cortex.
Trends Neurosci. 2011 Apr;34(4):177-87. doi: 10.1016/j.tins.2011.02.001.
6
Dendritic ion channel trafficking and plasticity.
Trends Neurosci. 2010 Jul;33(7):307-16. doi: 10.1016/j.tins.2010.03.002. Epub 2010 Apr 1.
7
Distance-dependent homeostatic synaptic scaling mediated by a-type potassium channels.
Front Cell Neurosci. 2009 Nov 30;3:15. doi: 10.3389/neuro.03.015.2009. eCollection 2009.
8
Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons.
Nat Neurosci. 2009 Dec;12(12):1485-7. doi: 10.1038/nn.2428. Epub 2009 Nov 8.
9
Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
J Neurophysiol. 2009 Nov;102(5):2955-73. doi: 10.1152/jn.00562.2009. Epub 2009 Sep 9.
10
Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons.
Neuron. 2009 Jul 30;63(2):171-7. doi: 10.1016/j.neuron.2009.06.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验