Université Paris Descartes, Sorbonne Paris Cité, IFR 95, CNRS UMR8118, Equipe ATIP, 45 rue des Saints-Pères, 75006 Paris, France.
Cell Mol Life Sci. 2012 Jan;69(1):75-88. doi: 10.1007/s00018-011-0769-4. Epub 2011 Jul 28.
Pyramidal neurons have a complex dendritic arbor containing tens of thousands of synapses. In order for the somatic/axonal membrane potential to reach action potential threshold, concurrent activation of multiple excitatory synapses is required. Frequently, instead of a simple algebraic summation of synaptic potentials in the soma, different dendritic compartments contribute to the integration of multiple inputs, thus endowing the neuron with a powerful computational ability. Most pyramidal neurons share common functional properties. However, different and sometimes contrasting dendritic integration rules are also observed. In this review, we focus on the dendritic integration of two neighboring pyramidal neurons in the hippocampus: the well-characterized CA1 and the much less understood CA2. The available data reveal that the dendritic integration of these neurons is markedly different even though they are targeted by common inputs at similar locations along their dendrites. This contrasting dendritic integration results in different routing of information flow and generates different corticohippocampal loops.
锥体神经元具有复杂的树突分支,包含数以万计的突触。为了使体/轴突膜电位达到动作电位阈值,需要同时激活多个兴奋性突触。通常情况下,在体部中,突触电位并不是简单的代数总和,不同的树突隔室有助于多个输入的整合,从而赋予神经元强大的计算能力。大多数锥体神经元具有共同的功能特性。然而,也观察到不同的和有时相反的树突整合规则。在这篇综述中,我们专注于海马体中两个相邻锥体神经元的树突整合:特征明确的 CA1 和了解甚少的 CA2。现有数据表明,即使它们在沿着树突的相似位置被共同输入靶向,这些神经元的树突整合也明显不同。这种对比鲜明的树突整合导致信息流的不同路由,并产生不同的皮质-海马环路。