Suppr超能文献

海马 CA1 和 CA2 锥体神经元不同树突隔室的突触整合。

Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.

机构信息

Université Paris Descartes, Sorbonne Paris Cité, IFR 95, CNRS UMR8118, Equipe ATIP, 45 rue des Saints-Pères, 75006 Paris, France.

出版信息

Cell Mol Life Sci. 2012 Jan;69(1):75-88. doi: 10.1007/s00018-011-0769-4. Epub 2011 Jul 28.

Abstract

Pyramidal neurons have a complex dendritic arbor containing tens of thousands of synapses. In order for the somatic/axonal membrane potential to reach action potential threshold, concurrent activation of multiple excitatory synapses is required. Frequently, instead of a simple algebraic summation of synaptic potentials in the soma, different dendritic compartments contribute to the integration of multiple inputs, thus endowing the neuron with a powerful computational ability. Most pyramidal neurons share common functional properties. However, different and sometimes contrasting dendritic integration rules are also observed. In this review, we focus on the dendritic integration of two neighboring pyramidal neurons in the hippocampus: the well-characterized CA1 and the much less understood CA2. The available data reveal that the dendritic integration of these neurons is markedly different even though they are targeted by common inputs at similar locations along their dendrites. This contrasting dendritic integration results in different routing of information flow and generates different corticohippocampal loops.

摘要

锥体神经元具有复杂的树突分支,包含数以万计的突触。为了使体/轴突膜电位达到动作电位阈值,需要同时激活多个兴奋性突触。通常情况下,在体部中,突触电位并不是简单的代数总和,不同的树突隔室有助于多个输入的整合,从而赋予神经元强大的计算能力。大多数锥体神经元具有共同的功能特性。然而,也观察到不同的和有时相反的树突整合规则。在这篇综述中,我们专注于海马体中两个相邻锥体神经元的树突整合:特征明确的 CA1 和了解甚少的 CA2。现有数据表明,即使它们在沿着树突的相似位置被共同输入靶向,这些神经元的树突整合也明显不同。这种对比鲜明的树突整合导致信息流的不同路由,并产生不同的皮质-海马环路。

相似文献

1
Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.
Cell Mol Life Sci. 2012 Jan;69(1):75-88. doi: 10.1007/s00018-011-0769-4. Epub 2011 Jul 28.
2
The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.
J Neurosci. 2017 Mar 22;37(12):3276-3293. doi: 10.1523/JNEUROSCI.2219-16.2017. Epub 2017 Feb 17.
3
Frequency-Dependent Synaptic Dynamics Differentially Tune CA1 and CA2 Pyramidal Neuron Responses to Cortical Input.
J Neurosci. 2021 Sep 29;41(39):8103-8110. doi: 10.1523/JNEUROSCI.0451-20.2021. Epub 2021 Aug 12.
5
Diversity of dendritic morphology and entorhinal cortex synaptic effectiveness in mouse CA2 pyramidal neurons.
Hippocampus. 2019 Feb;29(2):78-92. doi: 10.1002/hipo.23012. Epub 2018 Nov 25.
7
Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop.
Neuron. 2010 May 27;66(4):560-72. doi: 10.1016/j.neuron.2010.04.013.
8
Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons.
J Neurosci. 2020 Mar 25;40(13):2593-2605. doi: 10.1523/JNEUROSCI.2071-19.2020. Epub 2020 Feb 11.
9
Development of dendritic tonic GABAergic inhibition regulates excitability and plasticity in CA1 pyramidal neurons.
J Neurophysiol. 2014 Jul 15;112(2):287-99. doi: 10.1152/jn.00066.2014. Epub 2014 Apr 23.
10
Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
J Physiol. 1998 Mar 1;507 ( Pt 2)(Pt 2):441-62. doi: 10.1111/j.1469-7793.1998.441bt.x.

引用本文的文献

1
Excitatory synaptic integration mechanism of three types of granule cells in the dentate gyrus.
Cogn Neurodyn. 2025 Dec;19(1):40. doi: 10.1007/s11571-025-10226-0. Epub 2025 Feb 10.
3
Brain-derived neurotrophic factor interplay with oxidative stress: neuropathology approach in potential biomarker of Alzheimer's disease.
Dement Neuropsychol. 2023 Dec 4;17:e20230012. doi: 10.1590/1980-5764-DN-2023-0012. eCollection 2023.
4
Spatial integration of dendrites in fast-spiking basket cells.
Front Neurosci. 2023 Apr 4;17:1132980. doi: 10.3389/fnins.2023.1132980. eCollection 2023.
5
Assessing Local and Branch-specific Activity in Dendrites.
Neuroscience. 2022 May 1;489:143-164. doi: 10.1016/j.neuroscience.2021.10.022. Epub 2021 Oct 29.
6
Vezatin regulates seizures by controlling AMPAR-mediated synaptic activity.
Cell Death Dis. 2021 Oct 12;12(10):936. doi: 10.1038/s41419-021-04233-2.
7
Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse.
Brain Sci. 2021 Mar 22;11(3):404. doi: 10.3390/brainsci11030404.
9
Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns.
Front Neural Circuits. 2017 Jun 13;11:41. doi: 10.3389/fncir.2017.00041. eCollection 2017.
10
Neural Activity Patterns Underlying Spatial Coding in the Hippocampus.
Curr Top Behav Neurosci. 2018;37:43-100. doi: 10.1007/7854_2016_462.

本文引用的文献

1
Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus.
Hippocampus. 2012 Jan;22(1):43-56. doi: 10.1002/hipo.20841. Epub 2010 Sep 29.
2
RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory.
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16994-8. doi: 10.1073/pnas.1005362107. Epub 2010 Sep 13.
3
Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop.
Neuron. 2010 May 27;66(4):560-72. doi: 10.1016/j.neuron.2010.04.013.
4
Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.
PLoS One. 2009 Sep 29;4(9):e7224. doi: 10.1371/journal.pone.0007224.
5
The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro.
Brain. 2009 Nov;132(Pt 11):3032-46. doi: 10.1093/brain/awp238. Epub 2009 Sep 18.
7
Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14080-4. doi: 10.1073/pnas.0904775106. Epub 2009 Jul 31.
8
Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory.
Neuron. 2009 Jun 25;62(6):781-7. doi: 10.1016/j.neuron.2009.05.013.
10
HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K(+) channels.
Nat Neurosci. 2009 May;12(5):577-84. doi: 10.1038/nn.2307. Epub 2009 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验