Pham Martin Do, D'Angiulli Amedeo, Dehnavi Maryam Mehri, Chhabra Robin
Department of Computer Science, University of Toronto, Toronto, ON M5S 1A1, Canada.
Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
Brain Sci. 2023 Sep 13;13(9):1316. doi: 10.3390/brainsci13091316.
We examine the challenging "marriage" between computational efficiency and biological plausibility-A crucial node in the domain of spiking neural networks at the intersection of neuroscience, artificial intelligence, and robotics. Through a transdisciplinary review, we retrace the historical and most recent constraining influences that these parallel fields have exerted on descriptive analysis of the brain, construction of predictive brain models, and ultimately, the embodiment of neural networks in an enacted robotic agent. We study models of Spiking Neural Networks (SNN) as the central means enabling autonomous and intelligent behaviors in biological systems. We then provide a critical comparison of the available hardware and software to emulate SNNs for investigating biological entities and their application on artificial systems. Neuromorphics is identified as a promising tool to embody SNNs in real physical systems and different neuromorphic chips are compared. The concepts required for describing SNNs are dissected and contextualized in the new no man's land between cognitive neuroscience and artificial intelligence. Although there are recent reviews on the application of neuromorphic computing in various modules of the guidance, navigation, and control of robotic systems, the focus of this paper is more on closing the cognition loop in SNN-embodied robotics. We argue that biologically viable spiking neuronal models used for electroencephalogram signals are excellent candidates for furthering our knowledge of the explainability of SNNs. We complete our survey by reviewing different robotic modules that can benefit from neuromorphic hardware, e.g., perception (with a focus on vision), localization, and cognition. We conclude that the tradeoff between symbolic computational power and biological plausibility of hardware can be best addressed by neuromorphics, whose presence in neurorobotics provides an accountable empirical testbench for investigating synthetic and natural embodied cognition. We argue this is where both theoretical and empirical future work should converge in multidisciplinary efforts involving neuroscience, artificial intelligence, and robotics.
我们研究了计算效率与生物合理性之间具有挑战性的“联姻”——这是脉冲神经网络领域中一个关键节点,处于神经科学、人工智能和机器人技术的交叉点。通过跨学科综述,我们追溯了这些平行领域对大脑描述性分析、预测性大脑模型构建以及最终在实际机器人中神经网络实现所施加的历史和最新限制影响。我们将脉冲神经网络(SNN)模型作为在生物系统中实现自主和智能行为的核心手段进行研究。然后,我们对用于模拟SNN以研究生物实体及其在人工系统中的应用的现有硬件和软件进行了批判性比较。神经形态学被视为在实际物理系统中实现SNN的一种有前途的工具,并对不同的神经形态芯片进行了比较。在认知神经科学和人工智能之间这片新的无人区中,剖析并将描述SNN所需的概念置于具体情境中。尽管最近有关于神经形态计算在机器人系统制导、导航和控制各个模块中的应用综述,但本文的重点更多地是在实现SNN的机器人技术中闭合认知循环。我们认为,用于脑电图信号的具有生物学可行性的脉冲神经元模型是增进我们对SNN可解释性理解的极佳候选者。我们通过回顾不同的可受益于神经形态硬件的机器人模块(例如感知(重点是视觉)、定位和认知)来完成我们的综述。我们得出结论,神经形态学能够最好地解决硬件的符号计算能力与生物合理性之间的权衡问题,其在神经机器人技术中的存在为研究合成和自然具身认知提供了一个可问责的实证测试平台。我们认为,这就是未来理论和实证工作在涉及神经科学、人工智能和机器人技术的多学科努力中应该汇聚的方向。