Suppr超能文献

依赖距离的平衡型突触可塑性调节机制:a 型钾通道的作用。

Distance-dependent homeostatic synaptic scaling mediated by a-type potassium channels.

机构信息

Division of Biology, California Institute of Technology Pasadena, CA, USA.

出版信息

Front Cell Neurosci. 2009 Nov 30;3:15. doi: 10.3389/neuro.03.015.2009. eCollection 2009.

Abstract

Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low)-to-distal (high) dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with tetrodotoxin) coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 h, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC) frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron.

摘要

许多证据表明,CA1 锥体神经元树突上突触的效能随着与细胞体距离的增加而增加。单个突触的强度也被活动依赖性突触可塑性动态调节,这就提出了一个问题,即神经元如何协调单个突触变化与树突上突触强度的近端到远端梯度的维持。由于 A 型钾通道的密度表现出从近端(低)到远端(高)树突的相似梯度,A 电流可能在协调局部突触变化与全局突触强度梯度方面发挥作用。在这里,我们描述了一种由常规活动阻断(用河豚毒素)与 A 型钾通道阻断相结合引起的稳态可塑性形式。在 A 型钾通道抑制 12 小时后,从 CA1 体 recordings 中发现,微小兴奋性突触后电流(mEPSC)的频率显著增加,而在树突 recordings 中,mEPSC 的频率没有变化。与 mEPSC recordings 一致,我们观察到在锥体层中 AMPA 受体密度显著增加,但在放射层中没有变化。基于这些数据,我们提出 A 型钾通道在树突的顶端沿着轴突的分布可能产生一个从近端到远端的膜电位梯度。这个梯度可能调节沿着同一轴突的 AMPA 受体分布。总之,我们的结果表明,A 型钾通道在控制树突上的突触强度方面起着重要作用,这可能有助于维持神经元的计算能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/155c/2806179/51408b6d2f1d/fncel-03-015-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验