Suppr超能文献

ErpICASSO:一种用于脑电图事件相关分析中独立成分可靠性估计的工具。

ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis.

作者信息

Artoni Fiorenzo, Gemignani Angelo, Sebastiani Laura, Bedini Remo, Landi Alberto, Menicucci Danilo

机构信息

The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:368-71. doi: 10.1109/EMBC.2012.6345945.

Abstract

Independent component analysis and blind source separation methods are steadily gaining popularity for separating individual brain and non-brain source signals mixed by volume conduction in electroencephalographic data. Despite the advancements on these techniques, determining the number of embedded sources and their reliability are still open issues. In particular to date no method takes into account trial-to-trial variability in order to provide a reliability measure of independent components extracted in Event Related Potentials (ERPs) studies. In this work we present ErpICASSO, a new method which modifies a data-driven approach named ICASSO for the analysis of trials (epochs). In addition to ICASSO the method enables the user to estimate the number of embedded sources, and provides a quality index of each extracted ERP component by combining trial-to-trial bootstrapping and CCA projection. We applied ErpICASSO on ERPs recorded from 14 subjects presented with unpleasant and neutral pictures. We separated potentials putatively related to different systems and identified the four primary ERP independent sources. Standing on the confidence interval estimated by ErpICASSO, we were able to compare the components between neutral and unpleasant conditions. ErpICASSO yielded encouraging results, thus providing the scientific community with a useful tool for ICA signal processing whenever dealing with trials recorded in different conditions.

摘要

独立成分分析和盲源分离方法在分离脑电图数据中因容积传导而混合的个体脑源和非脑源信号方面正日益受到欢迎。尽管这些技术取得了进展,但确定嵌入源的数量及其可靠性仍然是未解决的问题。特别是迄今为止,尚无方法考虑到试验间的变异性,以便为事件相关电位(ERP)研究中提取的独立成分提供可靠性度量。在这项工作中,我们提出了ErpICASSO,这是一种新方法,它修改了一种名为ICASSO的数据驱动方法用于试验(时段)分析。除了ICASSO之外,该方法还能让用户估计嵌入源的数量,并通过结合试验间自举和典型相关分析投影为每个提取的ERP成分提供质量指标。我们将ErpICASSO应用于14名观看不愉快和中性图片的受试者记录的ERP。我们分离了可能与不同系统相关的电位,并识别出四个主要的ERP独立源。基于ErpICASSO估计的置信区间,我们能够比较中性和不愉快条件下的成分。ErpICASSO产生了令人鼓舞的结果,从而为科学界在处理不同条件下记录的试验时提供了一个用于ICA信号处理的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验