Suppr超能文献

利用下一代测序数据检测常见拷贝数变异并应用于群体聚类

Detection of common copy number variation with application to population clustering from next generation sequencing data.

作者信息

Duan Junbo, Zhang Ji-Gang, Deng Hong-Wen, Wang Yu-Ping

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1246-9. doi: 10.1109/EMBC.2012.6346163.

Abstract

Copy number variation (CNV) is a structural variation in human genome that has been associated with many complex diseases. In this paper we present a method to detect common copy number variation from next generation sequencing data. First, copy number variations are detected from each individual sample, which is formulated as a total variation penalized least square problem. Second, the common copy number discovery from multiple samples is obtained using source separation techniques such as the non-negative matrix factorization (NMF). Finally, the method is applied to population clustering. The results on real data analysis show that two family trio with different ancestries can be clustered into two ethnic groups based on their common CNVs, demonstrating the potential of the proposed method for application to population genetics.

摘要

拷贝数变异(CNV)是人类基因组中的一种结构变异,与许多复杂疾病相关。在本文中,我们提出了一种从下一代测序数据中检测常见拷贝数变异的方法。首先,从每个个体样本中检测拷贝数变异,这被公式化为一个总变异惩罚最小二乘问题。其次,使用诸如非负矩阵分解(NMF)等源分离技术从多个样本中发现常见的拷贝数。最后,将该方法应用于群体聚类。实际数据分析结果表明,两个具有不同祖先的三联体家族可以根据其常见的CNV聚类为两个种族群体,证明了所提出方法在群体遗传学应用中的潜力。

相似文献

10
Bioinformatics for copy number variation data.用于拷贝数变异数据的生物信息学
Methods Mol Biol. 2011;719:235-49. doi: 10.1007/978-1-61779-027-0_11.

本文引用的文献

8
The Sequence Alignment/Map format and SAMtools.序列比对/映射格式和 SAMtools。
Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验