Suppr超能文献

利用大规模平行测序技术对拷贝数变异进行高分辨率图谱绘制。

High-resolution mapping of copy-number alterations with massively parallel sequencing.

作者信息

Chiang Derek Y, Getz Gad, Jaffe David B, O'Kelly Michael J T, Zhao Xiaojun, Carter Scott L, Russ Carsten, Nusbaum Chad, Meyerson Matthew, Lander Eric S

机构信息

Broad Institute, Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.

出版信息

Nat Methods. 2009 Jan;6(1):99-103. doi: 10.1038/nmeth.1276. Epub 2008 Nov 30.

Abstract

Cancer results from somatic alterations in key genes, including point mutations, copy-number alterations and structural rearrangements. A powerful way to discover cancer-causing genes is to identify genomic regions that show recurrent copy-number alterations (gains and losses) in tumor genomes. Recent advances in sequencing technologies suggest that massively parallel sequencing may provide a feasible alternative to DNA microarrays for detecting copy-number alterations. Here we present: (i) a statistical analysis of the power to detect copy-number alterations of a given size; (ii) SegSeq, an algorithm to segment equal copy numbers from massively parallel sequence data; and (iii) analysis of experimental data from three matched pairs of tumor and normal cell lines. We show that a collection of approximately 14 million aligned sequence reads from human cell lines has comparable power to detect events as the current generation of DNA microarrays and has over twofold better precision for localizing breakpoints (typically, to within approximately 1 kilobase).

摘要

癌症源于关键基因的体细胞改变,包括点突变、拷贝数改变和结构重排。发现致癌基因的一个有效方法是识别肿瘤基因组中显示出反复拷贝数改变(增加和减少)的基因组区域。测序技术的最新进展表明,大规模平行测序可能为检测拷贝数改变提供一种可行的替代DNA微阵列的方法。在此我们展示:(i)对检测给定大小拷贝数改变能力的统计分析;(ii)SegSeq,一种从大规模平行序列数据中分割相等拷贝数的算法;以及(iii)对来自三对匹配的肿瘤和正常细胞系的实验数据的分析。我们表明,来自人类细胞系的约1400万条比对序列读数集合在检测事件方面具有与当前一代DNA微阵列相当的能力,并且在定位断点方面(通常精确到约1千碱基内)具有超过两倍的精度。

相似文献

1
High-resolution mapping of copy-number alterations with massively parallel sequencing.
Nat Methods. 2009 Jan;6(1):99-103. doi: 10.1038/nmeth.1276. Epub 2008 Nov 30.
3
Cytogenetically balanced translocations are associated with focal copy number alterations.
Hum Genet. 2007 Feb;120(6):795-805. doi: 10.1007/s00439-006-0251-9. Epub 2006 Oct 19.
4
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.
Ann Oncol. 2015 Jan;26(1):64-70. doi: 10.1093/annonc/mdu479. Epub 2014 Oct 15.
6
Detection of recurrent rearrangement breakpoints from copy number data.
BMC Bioinformatics. 2011 Apr 21;12:114. doi: 10.1186/1471-2105-12-114.

引用本文的文献

1
Transfer Learning for Error-Contaminated Poisson Regression Models.
Stat Med. 2025 Jul;44(15-17):e70163. doi: 10.1002/sim.70163.
2
A Systematic Review of the Advances and New Insights into Copy Number Variations in Plant Genomes.
Plants (Basel). 2025 May 6;14(9):1399. doi: 10.3390/plants14091399.
3
Somatic copy number deletion of chromosome 22q in papillary thyroid carcinoma.
Eur Thyroid J. 2025 Jan 27;14(1). doi: 10.1530/ETJ-24-0235. Print 2025 Feb 1.
4
LoRA-TV: read depth profile-based clustering of tumor cells in single-cell sequencing.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae277.
5
HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data.
Genome Biol. 2024 May 21;25(1):130. doi: 10.1186/s13059-024-03267-x.
6
The reckoning of chromosomal instability: past, present, future.
Chromosome Res. 2024 Feb 17;32(1):2. doi: 10.1007/s10577-024-09746-y.
7
On the core segmentation algorithms of copy number variation detection tools.
Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae022.
9
Rapid gene content turnover on the germline-restricted chromosome in songbirds.
Nat Commun. 2023 Jul 29;14(1):4579. doi: 10.1038/s41467-023-40308-8.
10
HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data.
bioRxiv. 2023 Jul 15:2023.07.13.548855. doi: 10.1101/2023.07.13.548855.

本文引用的文献

1
Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008 Oct 23;455(7216):1061-8. doi: 10.1038/nature07385. Epub 2008 Sep 4.
2
Substantial biases in ultra-short read data sets from high-throughput DNA sequencing.
Nucleic Acids Res. 2008 Sep;36(16):e105. doi: 10.1093/nar/gkn425. Epub 2008 Jul 26.
3
Mapping and sequencing of structural variation from eight human genomes.
Nature. 2008 May 1;453(7191):56-64. doi: 10.1038/nature06862.
6
Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.
Cancer Cell. 2008 Apr;13(4):355-64. doi: 10.1016/j.ccr.2008.02.010.
7
8
Quality scores and SNP detection in sequencing-by-synthesis systems.
Genome Res. 2008 May;18(5):763-70. doi: 10.1101/gr.070227.107. Epub 2008 Jan 22.
9
CGH microarrays and cancer.
Curr Opin Biotechnol. 2008 Feb;19(1):36-40. doi: 10.1016/j.copbio.2007.11.004. Epub 2007 Dec 26.
10
Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12. doi: 10.1073/pnas.0710052104. Epub 2007 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验