Yousefi Ali, Dibazar Alireza A, Berger Theodore W
Neural Dynamics Laboratory, University of Southern California, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1362-5. doi: 10.1109/EMBC.2012.6346191.
Linear model for synapse temporal dynamics and learning algorithm for synaptic adaptation in spiking neural networks are presented. The proposed linear model substantially simplifies analysis and training of spiking neural networks, meanwhile accurately models facilitation and depression dynamics in synapse. The learning rule is biologically plausible and is capable of simultaneously adjusting both of LTP and STP parameters of individual synapses in a network. To prove efficiency of the system, a small size spiking neural network is trained for generating different spike and bursting patterns of cortical neurons. The simulation results revealed that the linear model of synaptic dynamics along with the proposed STDP based learning algorithm can provide a practical tool for simulating and training very large scale spiking neural circuitry comprising of significant number of synapses and neurons.
提出了用于突触时间动态的线性模型和用于脉冲神经网络中突触适应性的学习算法。所提出的线性模型极大地简化了脉冲神经网络的分析和训练,同时准确地模拟了突触中的易化和抑制动态。该学习规则具有生物学合理性,并且能够同时调整网络中单个突触的长时程增强(LTP)和短时程可塑性(STP)参数。为了证明该系统的有效性,训练了一个小型脉冲神经网络以生成皮质神经元的不同脉冲和爆发模式。仿真结果表明,突触动态的线性模型以及所提出的基于STDP的学习算法可以为模拟和训练包含大量突触和神经元的超大规模脉冲神经电路提供一个实用工具。