Yousefi Rasoul, Nourani Mehrdad, Panahi Issa
Quality of Life Technology Laboratory The University of Texas at Dallas, Richardson, TX 75080, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2004-8. doi: 10.1109/EMBC.2012.6346350.
The performance of wearable biosensors is highly influenced by motion artifact. In this paper, a model is proposed for analysis of motion artifact in wearable photoplethysmography (PPG) sensors. Using this model, we proposed a robust real-time technique to estimate fundamental frequency and generate a noise reference signal. A Least Mean Square (LMS) adaptive noise canceler is then designed and validated using our synthetic noise generator. The analysis and results on proposed technique for noise cancellation shows promising performance.
可穿戴生物传感器的性能受到运动伪影的高度影响。本文提出了一种用于分析可穿戴光电容积脉搏波描记法(PPG)传感器中运动伪影的模型。利用该模型,我们提出了一种稳健的实时技术来估计基频并生成噪声参考信号。然后使用我们的合成噪声发生器设计并验证了最小均方(LMS)自适应噪声消除器。对所提出的噪声消除技术的分析和结果显示出了良好的性能。