Taylor Portia E, Almeida Gustavo J M, Hodgins Jessica K, Kanade Takeo
Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2214-8. doi: 10.1109/EMBC.2012.6346402.
Knowing how well an activity is performed is important for home rehabilitation. We would like to not only know if a motion is being performed correctly, but also in what way the motion is incorrect so that we may provide feedback to the user. This paper describes methods for assessing human motion quality using body-worn tri-axial accelerometers and gyroscopes. We use multi-label classifiers to detect subtle errors in exercise performances of eight individuals with knee osteoarthritis, a degenerative disease of the cartilage. We present results obtained using various machine learning methods with decision tree base classifiers. The classifier can detect classes in multi-label data with 75% sensitivity, 90% specificity and 80% accuracy. The methods presented here form the basis for an at-home rehabilitation device that will recognize errors in patient exercise performance, provide appropriate feedback on the performance, and motivate the patient to continue the prescribed regimen.
了解活动的执行情况对于家庭康复至关重要。我们不仅想知道某个动作是否执行正确,还想知道该动作在哪些方面不正确,以便我们能够向用户提供反馈。本文介绍了使用穿戴式三轴加速度计和陀螺仪评估人体运动质量的方法。我们使用多标签分类器来检测八名膝骨关节炎患者(一种软骨退行性疾病)运动表现中的细微错误。我们展示了使用各种基于决策树的机器学习方法获得的结果。该分类器能够以75%的灵敏度、90%的特异性和80%的准确率检测多标签数据中的类别。本文提出的方法构成了一种家庭康复设备的基础,该设备将识别患者运动表现中的错误,提供关于表现的适当反馈,并激励患者继续规定的康复方案。