Suppr超能文献

用于简化基于可穿戴传感器的运动生物反馈系统开发的移动应用程序:系统开发与评估。

Mobile App to Streamline the Development of Wearable Sensor-Based Exercise Biofeedback Systems: System Development and Evaluation.

作者信息

O'Reilly Martin, Duffin Joe, Ward Tomas, Caulfield Brian

机构信息

Insight Centre for Data Analytics, University College Dublin, Belfield, Ireland.

School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.

出版信息

JMIR Rehabil Assist Technol. 2017 Aug 21;4(2):e9. doi: 10.2196/rehab.7259.

Abstract

BACKGROUND

Biofeedback systems that use inertial measurement units (IMUs) have been shown recently to have the ability to objectively assess exercise technique. However, there are a number of challenges in developing such systems; vast amounts of IMU exercise datasets must be collected and manually labeled for each exercise variation, and naturally occurring technique deviations may not be well detected. One method of combatting these issues is through the development of personalized exercise technique classifiers.

OBJECTIVE

We aimed to create a tablet app for physiotherapists and personal trainers that would automate the development of personalized multiple and single IMU-based exercise biofeedback systems for their clients. We also sought to complete a preliminary investigation of the accuracy of such individualized systems in a real-world evaluation.

METHODS

A tablet app was developed that automates the key steps in exercise technique classifier creation through synchronizing video and IMU data collection, automatic signal processing, data segmentation, data labeling of segmented videos by an exercise professional, automatic feature computation, and classifier creation. Using a personalized single IMU-based classification system, 15 volunteers (12 males, 3 females, age: 23.8 [standard deviation, SD 1.8] years, height: 1.79 [SD 0.07] m, body mass: 78.4 [SD 9.6] kg) then completed 4 lower limb compound exercises. The real-world accuracy of the systems was evaluated.

RESULTS

The tablet app successfully automated the process of creating individualized exercise biofeedback systems. The personalized systems achieved 89.50% (1074/1200) accuracy, with 90.00% (540/600) sensitivity and 89.00% (534/600) specificity for assessing aberrant and acceptable technique with a single IMU positioned on the left thigh.

CONCLUSIONS

A tablet app was developed that automates the process required to create a personalized exercise technique classification system. This tool can be applied to any cyclical, repetitive exercise. The personalized classification model displayed excellent system accuracy even when assessing acute deviations in compound exercises with a single IMU.

摘要

背景

最近研究表明,使用惯性测量单元(IMU)的生物反馈系统有能力客观评估运动技术。然而,开发此类系统存在诸多挑战;必须收集大量的IMU运动数据集,并针对每个运动变化进行手动标注,而且可能无法很好地检测到自然发生的技术偏差。应对这些问题的一种方法是开发个性化运动技术分类器。

目的

我们旨在为物理治疗师和私人教练创建一款平板电脑应用程序,该程序能够自动为他们的客户开发基于多个和单个IMU的个性化运动生物反馈系统。我们还试图在实际评估中对这种个性化系统的准确性进行初步调查。

方法

开发了一款平板电脑应用程序,通过同步视频和IMU数据收集、自动信号处理、数据分割、由运动专业人员对分割后的视频进行数据标注、自动特征计算以及分类器创建,自动完成运动技术分类器创建的关键步骤。使用基于单个IMU的个性化分类系统,15名志愿者(12名男性,3名女性,年龄:23.8[标准差,SD 1.8]岁,身高:1.79[SD 0.07]米,体重:78.4[SD 9.6]千克)随后完成了4项下肢复合运动。对系统的实际准确性进行了评估。

结果

该平板电脑应用程序成功实现了创建个性化运动生物反馈系统过程的自动化。个性化系统的准确率达到89.50%(1074/1200),对于位于左大腿的单个IMU评估异常和可接受技术的敏感性为90.00%(540/600),特异性为89.00%(534/600)。

结论

开发了一款平板电脑应用程序,该程序能自动完成创建个性化运动技术分类系统所需的过程。此工具可应用于任何周期性、重复性运动。即使使用单个IMU评估复合运动中的急性偏差,个性化分类模型也显示出出色的系统准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4f/5583503/15474c2b1448/rehab_v4i2e9_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验