Razlighi Qolamreza R, Orekhov Aleksey, Laine Andrew, Stern Yaakov
Cognitive Neuroscience Division, Neurology Department, Columbia University.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3203-6. doi: 10.1109/EMBC.2012.6346646.
We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region.
我们提出了一种基于最近引入的因果马尔可夫随机场(MRF)模型——四边形MRF(QMRF)的新型贝叶斯分类器。我们使用二阶非齐次各向异性QMRF来对最大后验(MAP)分类器中的先验概率和似然概率进行建模,在此将其命名为MAP-QMRF。QMRF的联合分布是根据其相邻结构中存在的二维团块分布的乘积给出的。使用20幅手动标注的人脑MR图像,采用留一法验证方法来训练和评估MAP-QMRF分类器。在骰子重叠度量上比较所提出分类器和FreeSurfer的结果,显示平均增益为1.8%。我们进行了功效分析,以证明分割精度的这种提高显著减少了检测脑区体积5%变化所需的样本数量。