Suppr超能文献

用于脑磁共振图像分割的因果马尔可夫随机场

Causal Markov random field for brain MR image segmentation.

作者信息

Razlighi Qolamreza R, Orekhov Aleksey, Laine Andrew, Stern Yaakov

机构信息

Cognitive Neuroscience Division, Neurology Department, Columbia University.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3203-6. doi: 10.1109/EMBC.2012.6346646.

Abstract

We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region.

摘要

我们提出了一种基于最近引入的因果马尔可夫随机场(MRF)模型——四边形MRF(QMRF)的新型贝叶斯分类器。我们使用二阶非齐次各向异性QMRF来对最大后验(MAP)分类器中的先验概率和似然概率进行建模,在此将其命名为MAP-QMRF。QMRF的联合分布是根据其相邻结构中存在的二维团块分布的乘积给出的。使用20幅手动标注的人脑MR图像,采用留一法验证方法来训练和评估MAP-QMRF分类器。在骰子重叠度量上比较所提出分类器和FreeSurfer的结果,显示平均增益为1.8%。我们进行了功效分析,以证明分割精度的这种提高显著减少了检测脑区体积5%变化所需的样本数量。

相似文献

1
Causal Markov random field for brain MR image segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3203-6. doi: 10.1109/EMBC.2012.6346646.
2
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
3
Computation of image spatial entropy using quadrilateral Markov random field.
IEEE Trans Image Process. 2009 Dec;18(12):2629-39. doi: 10.1109/TIP.2009.2029988. Epub 2009 Aug 11.
6
Multi-level adaptive segmentation of multi-parameter MR brain images.
Comput Med Imaging Graph. 2000 Mar-Apr;24(2):87-98. doi: 10.1016/s0895-6111(99)00042-7.
7
Automated segmentation of mouse brain images using extended MRF.
Neuroimage. 2009 Jul 1;46(3):717-25. doi: 10.1016/j.neuroimage.2009.02.012. Epub 2009 Feb 21.
8
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.
9
A prior feature SVM-MRF based method for mouse brain segmentation.
Neuroimage. 2012 Feb 1;59(3):2298-306. doi: 10.1016/j.neuroimage.2011.09.053. Epub 2011 Oct 1.
10
Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
Med Image Anal. 2011 Apr;15(2):267-82. doi: 10.1016/j.media.2010.12.003. Epub 2010 Dec 25.

引用本文的文献

1
Automated segmentation and shape characterization of volumetric data.
Neuroimage. 2014 May 15;92:156-68. doi: 10.1016/j.neuroimage.2014.01.053. Epub 2014 Feb 9.

本文引用的文献

1
Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods.
Neuroimage. 2010 Jul 1;51(3):1047-56. doi: 10.1016/j.neuroimage.2010.03.012. Epub 2010 Mar 10.
2
Computation of image spatial entropy using quadrilateral Markov random field.
IEEE Trans Image Process. 2009 Dec;18(12):2629-39. doi: 10.1109/TIP.2009.2029988. Epub 2009 Aug 11.
3
Evaluation of automated brain MR image segmentation and volumetry methods.
Hum Brain Mapp. 2009 Apr;30(4):1310-27. doi: 10.1002/hbm.20599.
5
Atlas renormalization for improved brain MR image segmentation across scanner platforms.
IEEE Trans Med Imaging. 2007 Apr;26(4):479-86. doi: 10.1109/TMI.2007.893282.
6
Unified segmentation.
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.
7
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
Neuron. 2002 Jan 31;33(3):341-55. doi: 10.1016/s0896-6273(02)00569-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验