School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona 85287-5906, USA.
Neuroimage. 2012 Feb 1;59(3):2298-306. doi: 10.1016/j.neuroimage.2011.09.053. Epub 2011 Oct 1.
We introduce an automated method, called prior feature Support Vector Machine-Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer's disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders.
我们介绍了一种自动化方法,称为先验特征支持向量机-马尔可夫随机场(pSVMRF),用于分割三维小鼠脑磁共振显微镜(MRM)图像。我们之前的工作,扩展的马尔可夫随机场(eMRF)集成了支持向量机(SVM)和马尔可夫随机场(MRF)方法,导致分割准确性得到提高;然而,eMRF 的计算非常昂贵,这可能限制了它在分割和鲁棒性方面的性能。在这项研究中,pSVMRF 减少了 SVM 的训练和测试时间,同时提高了分割性能。与 eMRF 方法不同,eMRF 方法中 MR 强度信息和位置先验以线性方式组合,而 pSVMRF 以非线性方式组合这种信息,并增强了算法的判别能力。我们使用未经染色和主动染色的小鼠脑标本的磁共振成像验证了所提出的方法,并将分割准确性与两种现有方法进行了比较:eMRF 和 MRF。C57BL/6 小鼠用于训练和测试,使用交叉验证。对于福尔马林固定的 C57BL/6 标本,pSVMRF 优于 eMRF 和 MRF。对于较大结构(如海马体和尾状核),染色或未染色的 C57BL/6 大脑的分割准确性相似(约 87%),但对于较小区域(如黑质)的分割准确性显著提高(从 78.36%增加到 91.55%),和前连合(从50%增加到80%)。为了测试分割对增加的解剖变异性的鲁棒性,我们添加了两个品系,BXD29 和阿尔茨海默病的转基因小鼠模型。新品系的海马体和尾状核的分割准确性为 80%,表明 pSVMRF 是一种有前途的方法,可用于表型分析人类大脑疾病的小鼠模型。