Suppr超能文献

体积数据的自动分割与形状特征描述

Automated segmentation and shape characterization of volumetric data.

作者信息

Galinsky Vitaly L, Frank Lawrence R

机构信息

Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, USA; Electrical and Computer Engineering Department, University of California at San Diego, La Jolla, CA 92093-0407, USA.

Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92093-0854, USA; Center for Functional MRI, University of California at San Diego, La Jolla, CA 92093-0677, USA.

出版信息

Neuroimage. 2014 May 15;92:156-68. doi: 10.1016/j.neuroimage.2014.01.053. Epub 2014 Feb 9.

Abstract

Characterization of complex shapes embedded within volumetric data is an important step in a wide range of applications. Standard approaches to this problem employ surface-based methods that require inefficient, time consuming, and error prone steps of surface segmentation and inflation to satisfy the uniqueness or stability of subsequent surface fitting algorithms. Here we present a novel method based on a spherical wave decomposition (SWD) of the data that overcomes several of these limitations by directly analyzing the entire data volume, obviating the segmentation, inflation, and surface fitting steps, significantly reducing the computational time and eliminating topological errors while providing a more detailed quantitative description based upon a more complete theoretical framework of volumetric data. The method is demonstrated and compared to the current state-of-the-art neuroimaging methods for segmentation and characterization of volumetric magnetic resonance imaging data of the human brain.

摘要

对体数据中嵌入的复杂形状进行特征化是广泛应用中的重要一步。解决这个问题的标准方法采用基于表面的方法,这些方法需要进行效率低下、耗时且容易出错的表面分割和膨胀步骤,以满足后续表面拟合算法的唯一性或稳定性。在此,我们提出一种基于数据球面波分解(SWD)的新方法,该方法通过直接分析整个数据体克服了其中一些限制,避免了分割、膨胀和表面拟合步骤,显著减少了计算时间并消除了拓扑错误,同时基于更完整的体数据理论框架提供了更详细的定量描述。该方法通过对用于人类大脑体磁共振成像数据分割和特征化的当前最先进神经成像方法进行了演示和比较。

相似文献

1
Automated segmentation and shape characterization of volumetric data.
Neuroimage. 2014 May 15;92:156-68. doi: 10.1016/j.neuroimage.2014.01.053. Epub 2014 Feb 9.
2
A combined surface and volumetric registration (SAVOR) framework to study cortical biomarkers and volumetric imaging data.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):713-20. doi: 10.1007/978-3-642-04268-3_88.
3
Topological correction of brain surface meshes using spherical harmonics.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):125-32. doi: 10.1007/978-3-642-04271-3_16.
4
A general framework for image segmentation using ordered spatial dependency.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):848-55. doi: 10.1007/11866763_104.
5
Geometry driven volumetric registration.
Inf Process Med Imaging. 2007;20:675-86. doi: 10.1007/978-3-540-73273-0_56.
6
Multiscale 3-D shape representation and segmentation using spherical wavelets.
IEEE Trans Med Imaging. 2007 Apr;26(4):598-618. doi: 10.1109/TMI.2007.893284.
7
Topology correction using fast marching methods and its application to brain segmentation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):484-91. doi: 10.1007/11566489_60.
8
Coupled shape distribution-based segmentation of multiple objects.
Inf Process Med Imaging. 2005;19:345-56. doi: 10.1007/11505730_29.
9
Automated topology correction for human brain segmentation.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):316-23. doi: 10.1007/11866763_39.
10
Segmentation of neighboring organs in medical image with model competition.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):270-7. doi: 10.1007/11566465_34.

引用本文的文献

1
Imaging of brain electric field networks with spatially resolved EEG.
Elife. 2025 Jun 5;13:RP100123. doi: 10.7554/eLife.100123.
2
Imaging of brain electric field networks with spatially resolved EEG.
Res Sq. 2025 Mar 12:rs.3.rs-2432269. doi: 10.21203/rs.3.rs-2432269/v2.
3
Diffusion MRI tractography of the locus coeruleus-transentorhinal cortex connections using GO-ESP.
Magn Reson Med. 2022 Apr;87(4):1816-1831. doi: 10.1002/mrm.29088. Epub 2021 Nov 18.
4
Unveiling the third dimension in morphometry with automated quantitative volumetric computations.
Sci Rep. 2021 Jul 14;11(1):14438. doi: 10.1038/s41598-021-93490-4.
5
Universal theory of brain waves: from linear loops to nonlinear synchronized spiking and collective brain rhythms.
Phys Rev Res. 2020 Apr-Jun;2(2). doi: 10.1103/PhysRevResearch.2.023061. Epub 2020 Apr 21.
6
Brain Waves: Emergence of Localized, Persistent, Weakly Evanescent Cortical Loops.
J Cogn Neurosci. 2020 Nov;32(11):2178-2202. doi: 10.1162/jocn_a_01611. Epub 2020 Jul 21.
7
JEDI: Joint Estimation Diffusion Imaging of macroscopic and microscopic tissue properties.
Magn Reson Med. 2020 Aug;84(2):966-990. doi: 10.1002/mrm.28141. Epub 2020 Jan 9.
8
Symplectomorphic registration with phase space regularization by entropy spectrum pathways.
Magn Reson Med. 2019 Feb;81(2):1335-1352. doi: 10.1002/mrm.27402. Epub 2018 Sep 19.
9
Joint Estimation of Effective Brain Wave Activation Modes Using EEG/MEG Sensor Arrays and Multimodal MRI Volumes.
Neural Comput. 2018 Jul;30(7):1725-1749. doi: 10.1162/neco_a_01087. Epub 2018 Apr 13.
10
Brain Volume Estimation Enhancement by Morphological Image Processing Tools.
J Biomed Phys Eng. 2017 Dec 1;7(4):379-388. eCollection 2017 Dec.

本文引用的文献

1
Early adolescent cortical thinning is related to better neuropsychological performance.
J Int Neuropsychol Soc. 2013 Oct;19(9):962-70. doi: 10.1017/S1355617713000878. Epub 2013 Aug 15.
2
Automatic MRI 2D brain segmentation using graph searching technique.
Int J Numer Method Biomed Eng. 2013 Sep;29(9):887-904. doi: 10.1002/cnm.2498. Epub 2012 Jun 27.
3
Causal Markov random field for brain MR image segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3203-6. doi: 10.1109/EMBC.2012.6346646.
4
Recent binge drinking predicts smaller cerebellar volumes in adolescents.
Psychiatry Res. 2013 Jan 30;211(1):17-23. doi: 10.1016/j.pscychresns.2012.07.009. Epub 2012 Nov 13.
5
Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4929-34. doi: 10.1109/IEMBS.2011.6091222.
6
Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing.
Magn Reson Imaging. 2012 Feb;30(2):230-46. doi: 10.1016/j.mri.2011.09.008. Epub 2011 Nov 30.
7
Binge drinking differentially affects adolescent male and female brain morphometry.
Psychopharmacology (Berl). 2012 Apr;220(3):529-39. doi: 10.1007/s00213-011-2500-4. Epub 2011 Sep 28.
8
3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.
Int J Comput Assist Radiol Surg. 2012 Jul;7(4):493-506. doi: 10.1007/s11548-011-0649-2. Epub 2011 Aug 11.
9
A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.
Phys Med Biol. 2011 Jun 7;56(11):3269-300. doi: 10.1088/0031-9155/56/11/007. Epub 2011 May 10.
10
Semi-automatic 3D segmentation of brain structures from MRI.
Int J Data Min Bioinform. 2011;5(2):158-73. doi: 10.1504/ijdmb.2011.039175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验