Hendrickson Phillip J, Yu Gene J, Robinson Brian S, Song Dong, Berger Theodore W
Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4595-8. doi: 10.1109/EMBC.2012.6346990.
Real neurobiological systems in the mammalian brain have a complicated and detailed structure, being composed of 1) large numbers of neurons with intricate, branching morphologies--complex morphology brings with it complex passive membrane properties; 2) active membrane properties--nonlinear sodium, potassium, calcium, etc. conductances; 3) non-uniform distributions throughout the dendritic and somal membrane surface of these non-linear conductances; 4) non-uniform and topographic connectivity between pre- and post-synaptic neurons; and 5) activity-dependent changes in synaptic function. One of the essential, and as yet unanswered questions in neuroscience is the role of these fundamental structural and functional features in determining "neural processing" properties of a given brain system. To help answer that question, we're creating a large-scale biologically realistic model of the intrinsic pathway of the hippocampus, which consists of the projection from layer II entorhinal cortex (EC) to dentate gyrus (DG), EC to CA3, DG to CA3, and CA3 to CA1. We describe the computational hardware and software tools the model runs on, and demonstrate its viability as a modeling platform with an EC-to-DG model.
哺乳动物大脑中的真实神经生物学系统具有复杂而精细的结构,它由以下部分组成:1)大量具有复杂分支形态的神经元——复杂的形态带来了复杂的被动膜特性;2)主动膜特性——非线性的钠、钾、钙等电导;3)这些非线性电导在树突和体细胞膜表面的非均匀分布;4)突触前和突触后神经元之间非均匀且具有拓扑结构的连接;5)依赖于活动的突触功能变化。神经科学中一个基本且尚未得到解答的问题是,这些基本的结构和功能特征在决定给定脑系统的“神经处理”特性中所起的作用。为了帮助回答这个问题,我们正在创建一个大规模的、具有生物学真实性的海马体内在通路模型,该模型由从内嗅皮层(EC)第II层到齿状回(DG)、EC到CA3、DG到CA3以及CA3到CA1的投射组成。我们描述了该模型运行所依赖的计算硬件和软件工具,并通过一个EC到DG的模型展示了其作为建模平台的可行性。