Suppr超能文献

为大规模海马体生物逼真模型实现地形约束连接。

Implementation of topographically constrained connectivity for a large-scale biologically realistic model of the hippocampus.

作者信息

Yu Gene J, Robinson Brian S, Hendrickson Phillip J, Song Dong, Berger Theodore W

机构信息

Center for Neural Engineering, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1358-61. doi: 10.1109/EMBC.2012.6346190.

Abstract

In order to understand how memory works in the brain, the hippocampus is highly studied because of its role in the encoding of long-term memories. We have identified four characteristics that would contribute to the encoding process: the morphology of the neurons, their biophysics, synaptic plasticity, and the topography connecting the input to and the neurons within the hippocampus. To investigate how long-term memory is encoded, we are constructing a large-scale biologically realistic model of the rat hippocampus. This work focuses on how topography contributes to the output of the hippocampus. Generally, the brain is structured with topography such that the synaptic connections formed by an input neuron population are organized spatially across the receiving population. The first step in our model was to construct how entorhinal cortex inputs connect to the dentate gyrus of the hippocampus. We have derived realistic constraints from topographical data to connect the two cell populations. The details on how these constraints were applied are presented. We demonstrate that the spatial connectivity has a major impact on the output of the simulation, and the results emphasize the importance of carefully defining spatial connectivity in neural network models of the brain in order to generate relevant spatiotemporal patterns.

摘要

为了了解记忆在大脑中的工作方式,海马体因其在长期记忆编码中的作用而受到广泛研究。我们已经确定了有助于编码过程的四个特征:神经元的形态、它们的生物物理学、突触可塑性以及连接海马体输入与内部神经元的拓扑结构。为了研究长期记忆是如何编码的,我们正在构建一个大鼠海马体的大规模生物逼真模型。这项工作重点关注拓扑结构如何影响海马体的输出。一般来说,大脑是按照拓扑结构构建的,使得输入神经元群体形成的突触连接在空间上分布于接收群体中。我们模型的第一步是构建内嗅皮层输入如何连接到海马体齿状回。我们从拓扑数据中得出了现实的约束条件来连接这两个细胞群体。文中介绍了这些约束条件的应用细节。我们证明空间连接性对模拟输出有重大影响,结果强调了在大脑神经网络模型中仔细定义空间连接性以生成相关时空模式的重要性。

相似文献

引用本文的文献

3
A 3-D admittance-level computational model of a rat hippocampus for improving prosthetic design.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2295-8. doi: 10.1109/EMBC.2015.7318851.
7
Towards a large-scale biologically realistic model of the hippocampus.迈向大规模生物逼真的海马体模型。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4595-8. doi: 10.1109/EMBC.2012.6346990.

本文引用的文献

1
Towards a large-scale biologically realistic model of the hippocampus.迈向大规模生物逼真的海马体模型。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4595-8. doi: 10.1109/EMBC.2012.6346990.
7
Lamellar organization of hippocampal pathways.海马体通路的板层组织。
Exp Brain Res. 1971;13(2):222-38. doi: 10.1007/BF00234087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验