Suppr超能文献

基于预处理技术的肌电信号压缩

Electromyographic signal compression based on preprocessing techniques.

作者信息

Melo Wheidima C, Filho Eddie B L, Júnior Waldir S S

机构信息

Universidade Federal do Amazonas - UFAM, Av. Gen. Rodrigo Octávio Jordão Ramos, 3000, Manaus - AM, 69077-000, Brazil.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5404-7. doi: 10.1109/EMBC.2012.6347216.

Abstract

Recently, electromyographic records have been rearranged into two-dimensional arrays and encoded with image compressors, in the same way as image data. However, as a consequence of this reshaping, the correlation among signal segments is generally lost, which reduces the compression efficiency. In the present work, new preprocessing techniques for encoding electromyographic signals as two-dimensional matrices are presented, namely percentage difference sorting and relative complexity sorting, which have the potential to favor the exploitation of the intersegment dependencies. The experiments were carried out with real isometric records acquired in laboratory, that were first preprocessed and then compressed with a JPEG2000 encoder, showing that the proposed framework is effective and outperforms even state-of-the-art schemes present in the literature, in terms of PRD × Compression Ratio.

摘要

最近,肌电图记录已被重新排列成二维数组,并像图像数据一样用图像压缩器进行编码。然而,这种重塑的结果是,信号段之间的相关性通常会丢失,这降低了压缩效率。在本研究中,提出了将肌电信号编码为二维矩阵的新预处理技术,即百分比差排序和相对复杂度排序,这有可能有利于利用段间依赖性。实验使用在实验室采集的真实等长记录进行,这些记录首先经过预处理,然后用JPEG2000编码器进行压缩,结果表明,就峰值信噪比(PRD)×压缩率而言,所提出的框架是有效的,甚至优于文献中现有的最先进方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验