Shin Yong-Jun, Sayed Ali H, Shen Xiling
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5449-53. doi: 10.1109/EMBC.2012.6347227.
Using the transient interleukin (IL)-2 secretion of effector T helper (T(eff)) cells as an example, we show that self-organizing multicellular behavior can be modeled and predicted by an adaptive gene network model. Incorporating an adaptation algorithm we established previously, we construct a network model that has the parameter values iteratively updated to cope with environmental change governed by diffusion and cell-cell interactions. In contrast to non-adaptive models, we find that the proposed adaptive model for individual T(eff) cells can generate transient IL-2 secretory behavior that is observed experimentally at the population level. The proposed adaptive modeling approach can be a useful tool in the study of self-organizing behavior observed in other contexts in biology, including microbial pathogenesis, antibiotic resistance, embryonic development, tumor formation, etc.
以效应性辅助性T(T(eff))细胞的瞬时白细胞介素(IL)-2分泌为例,我们表明自组织多细胞行为可以通过自适应基因网络模型进行建模和预测。结合我们之前建立的一种适应算法,我们构建了一个网络模型,其参数值会迭代更新,以应对由扩散和细胞间相互作用所支配的环境变化。与非自适应模型相比,我们发现所提出的针对单个T(eff)细胞的自适应模型能够产生在群体水平上通过实验观察到的瞬时IL-2分泌行为。所提出的自适应建模方法可能是研究生物学中其他情况下观察到的自组织行为的有用工具,包括微生物发病机制、抗生素耐药性、胚胎发育、肿瘤形成等。