Suppr超能文献

基于临床数据和自动神经纤维层缺损检测的青光眼风险评估。

Glaucoma risk assessment based on clinical data and automated nerve fiber layer defects detection.

作者信息

Hatanaka Yuji, Muramatsu Chisako, Sawada Akira, Hara Takeshi, Yamamoto Tetsuya, Fujita Hiroshi

机构信息

Department of Electronic Systems Engineering, School of Engineering, University of Shiga Prefecture, Hassaka-cho 2500, Hikone-shi, Shiga 522-8533, Japan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5963-6. doi: 10.1109/EMBC.2012.6347352.

Abstract

Glaucoma is the first leading cause of vision loss in Japan, thus developing a scheme for helping glaucoma diagnosis is important. For this problem, automated nerve fiber layer defects (NFLDs) detection method was proposed, but glaucoma risk assessment using this method was not evaluated. In this paper, computerized risk assessment for having glaucoma was attempted by use of the patients' clinical information, and the performances of the NFLDs detection and the glaucoma risk assessment were compared. The clinical data includes the systemic data, ophthalmologic data, and right and left retinal images. Glaucoma risk assessment was built by using machine learning technique, which were artificial neural network, radial basis function (RBF) network, k-nearest neighbor algorithm, and support vector machine. The inputting parameter was ten clinical ones with/without the results of NFLDs detection. As a result, proposed glaucoma risk assessment showed the higher performance than the NFLD detection. The result of the glaucoma risk assessment indicates that the computerized assessment may be useful for the determination of glaucoma risk.

摘要

青光眼是日本视力丧失的首要原因,因此制定一套有助于青光眼诊断的方案至关重要。针对这一问题,人们提出了自动神经纤维层缺损(NFLD)检测方法,但尚未对使用该方法进行青光眼风险评估进行评价。在本文中,尝试利用患者的临床信息对患青光眼的风险进行计算机化评估,并比较了NFLD检测和青光眼风险评估的性能。临床数据包括全身数据、眼科数据以及左右视网膜图像。利用机器学习技术构建青光眼风险评估模型,这些技术包括人工神经网络、径向基函数(RBF)网络、k近邻算法和支持向量机。输入参数为十个临床参数,包括有无NFLD检测结果。结果表明,所提出的青光眼风险评估模型比NFLD检测具有更高的性能。青光眼风险评估结果表明,计算机化评估可能有助于确定青光眼风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验