Suppr超能文献

利用视网膜神经纤维层结构测量和功能性视野点检测青光眼进展

Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points.

作者信息

Yousefi Siamak, Goldbaum Michael H, Balasubramanian Madhusudhanan, Jung Tzyy-Ping, Weinreb Robert N, Medeiros Felipe A, Zangwill Linda M, Liebmann Jeffrey M, Girkin Christopher A, Bowd Christopher

出版信息

IEEE Trans Biomed Eng. 2014 Apr;61(4):1143-54. doi: 10.1109/TBME.2013.2295605.

Abstract

Machine learning classifiers were employed to detect glaucomatous progression using longitudinal series of structural data extracted from retinal nerve fiber layer thickness measurements and visual functional data recorded from standard automated perimetry tests. Using the collected data, a longitudinal feature vector was created for each patient's eye by computing the norm 1 difference vector of the data at the baseline and at each follow-up visit. The longitudinal features from each patient's eye were then fed to the machine learning classifier to classify each eye as stable or progressed over time. This study was performed using several machine learning classifiers including Bayesian, Lazy, Meta, and Tree, composing different families. Combinations of structural and functional features were selected and ranked to determine the relative effectiveness of each feature. Finally, the outcomes of the classifiers were assessed by several performance metrics and the effectiveness of structural and functional features were analyzed.

摘要

使用机器学习分类器,通过从视网膜神经纤维层厚度测量中提取的纵向结构数据系列以及从标准自动视野计测试记录的视觉功能数据来检测青光眼进展。利用收集到的数据,通过计算基线和每次随访时数据的1范数差异向量,为每个患者的眼睛创建一个纵向特征向量。然后将每个患者眼睛的纵向特征输入到机器学习分类器中,以将每只眼睛分类为随时间稳定或进展。本研究使用了包括贝叶斯、懒惰、元学习和树模型等几个机器学习分类器,它们属于不同的类别。选择并排列结构和功能特征的组合,以确定每个特征的相对有效性。最后,通过几个性能指标评估分类器的结果,并分析结构和功能特征的有效性。

相似文献

8
The Trajectory of Glaucoma Progression in 2-Dimensional Structural-Functional Space.二维结构-功能空间中的青光眼进展轨迹。
Ophthalmol Glaucoma. 2020 Nov-Dec;3(6):466-474. doi: 10.1016/j.ogla.2020.06.003. Epub 2020 Jun 9.

引用本文的文献

10
Use of artificial intelligence in forecasting glaucoma progression.人工智能在预测青光眼进展中的应用。
Taiwan J Ophthalmol. 2023 May 23;13(2):168-183. doi: 10.4103/tjo.TJO-D-23-00022. eCollection 2023 Apr-Jun.

本文引用的文献

4
Automated diagnosis of glaucoma using texture and higher order spectra features.利用纹理和高阶谱特征实现青光眼的自动诊断。
IEEE Trans Inf Technol Biomed. 2011 May;15(3):449-55. doi: 10.1109/TITB.2011.2119322. Epub 2011 Feb 24.
9
Machine learning classifiers in glaucoma.青光眼的机器学习分类器
Optom Vis Sci. 2008 Jun;85(6):396-405. doi: 10.1097/OPX.0b013e3181783ab6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验