Suppr超能文献

在模拟和临床脑磁图(MEG)数据中对稀疏源成像和最小范数估计方法的评估。

Evaluations of sparse source imaging and minimum norm estimate methods in both simulation and clinical MEG data.

作者信息

Zhu Min, Zhang Wenbo, Dickens Deanna, Ding Lei

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6744-7. doi: 10.1109/EMBC.2012.6347542.

Abstract

The aim of the present study is to evaluate the capability of a recently proposed l(1)-norm based regularization method, named as variation-based sparse cortical current density (VB-SCCD) algorithm, in estimating location and spatial coverage of extensive brain sources. Its performance was compared to the conventional minimum norm estimate (MNE) using both simulations and clinical interictal spike MEG data from epilepsy patients. Four metrics were adopted to evaluate two regularization methods for EEG/MEG inverse problems from different aspects in simulation study. Both methods were further compared in reconstructing epileptic sources and validated using results from clinical diagnosis. Both simulation and experimental results suggest VB-SCCD has better performance in localization and estimation of source extents, as well as less spurious sources than MNE, which makes it a promising noninvasive tool to assist presurgical evaluation for surgical treatment in epilepsy patients.

摘要

本研究的目的是评估一种最近提出的基于l(1)范数的正则化方法,即基于变分的稀疏皮质电流密度(VB-SCCD)算法,在估计广泛脑源的位置和空间覆盖范围方面的能力。使用模拟和癫痫患者的临床发作间期棘波脑磁图(MEG)数据,将其性能与传统的最小范数估计(MNE)进行了比较。在模拟研究中,采用了四个指标从不同方面评估两种用于脑电/脑磁图逆问题的正则化方法。在重建癫痫源方面对两种方法进行了进一步比较,并使用临床诊断结果进行了验证。模拟和实验结果均表明,与MNE相比,VB-SCCD在源定位和范围估计方面具有更好的性能,并且伪源更少,这使其成为协助癫痫患者手术治疗术前评估的一种有前景的非侵入性工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验