Suppr超能文献

Shortest-path fractal dimension for percolation in two and three dimensions.

作者信息

Zhou Zongzheng, Yang Ji, Deng Youjin, Ziff Robert M

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061101. doi: 10.1103/PhysRevE.86.061101. Epub 2012 Dec 4.

Abstract

We carry out a high-precision Monte Carlo study of the shortest-path fractal dimension d(min) for percolation in two and three dimensions, using the Leath-Alexandrowicz method which grows a cluster from an active seed site. A variety of quantities are sampled as a function of the chemical distance, including the number of activated sites, a measure of the radius, and the survival probability. By finite-size scaling, we determine d(min)=1.13077(2) and 1.3756(6) in two and three dimensions, respectively. The result in two dimensions rules out the recently conjectured value d(min)=217/192 [Deng et al., Phys. Rev. E 81, 020102(R) (2010)].

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验