Molecular Biomarkers Unit, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States.
Anal Chem. 2013 Mar 5;85(5):2927-36. doi: 10.1021/ac3035579. Epub 2013 Feb 15.
Dysregulated glycotransferase enzymes in cancer cells produce aberrant glycans--some of which can help facilitate metastases. Within a cell, individual glycotransferases promiscuously help to construct dozens of unique glycan structures, making it difficult to comprehensively track their activity in biospecimens--especially where they are absent or inactive. Here, we describe an approach to deconstruct glycans in whole biospecimens then analytically pool together resulting monosaccharide-and-linkage-specific degradation products ("glycan nodes") that directly represent the activities of specific glycotransferases. To implement this concept, a reproducible, relative quantitation-based glycan methylation analysis methodology was developed that simultaneously captures information from N-, O-, and lipid linked glycans and is compatible with whole biofluids and homogenized tissues; in total, over 30 different glycan nodes are detectable per gas chromatography-mass spectrometry (GC-MS) run. Numerous nonliver organ cancers are known to induce the production of abnormally glycosylated serum proteins. Thus, following analytical validation, in blood plasma, the technique was applied to a group of 59 lung cancer patient plasma samples and age/gender/smoking-status-matched non-neoplastic controls from the Lung Cancer in Central and Eastern Europe (CEE) study to gauge the clinical utility of the approach toward the detection of lung cancer. Ten smoking-independent glycan node ratios were found that detect lung cancer with individual receiver operating characteristic (ROC) c-statistics ranging from 0.76 to 0.88. Two glycan nodes provided novel evidence for altered ST6Gal-I and GnT-IV glycotransferase activities in lung cancer patients. In summary, a conceptually novel approach to the analysis of glycans in unfractionated human biospecimens has been developed that, upon clinical validation for specific applications, may provide diagnostic and/or predictive information in glycan-altering diseases.
癌细胞中失调的糖基转移酶会产生异常的聚糖——其中一些聚糖有助于促进转移。在细胞内,单个糖基转移酶会杂乱无章地帮助构建数十种独特的聚糖结构,这使得全面跟踪其在生物样本中的活性变得非常困难——尤其是当它们不存在或不活跃时。在这里,我们描述了一种方法,可以对整个生物样本中的聚糖进行解构,然后分析性地将产生的单糖和键特异性降解产物(“聚糖节点”)汇集在一起,这些产物直接代表特定糖基转移酶的活性。为了实现这一概念,我们开发了一种可重复的、基于相对定量的聚糖甲基化分析方法,该方法同时捕获 N-、O- 和脂连接聚糖的信息,并且与全生物流体和匀浆组织兼容;总共,每个气相色谱-质谱(GC-MS)运行可检测到 30 多种不同的聚糖节点。众所周知,许多非肝脏癌症会诱导异常糖基化血清蛋白的产生。因此,在经过分析验证后,我们将该技术应用于一组 59 例肺癌患者的血浆样本和来自中欧和东欧肺癌(CEE)研究的年龄/性别/吸烟状况匹配的非肿瘤对照者的血浆中,以评估该方法在检测肺癌方面的临床应用价值。发现了 10 个与吸烟无关的聚糖节点比值,这些比值通过个体接收者操作特征(ROC)曲线下面积(c 统计量)的检测可达到 0.76 到 0.88,用于检测肺癌。两个聚糖节点为肺癌患者中 ST6Gal-I 和 GnT-IV 糖基转移酶活性的改变提供了新的证据。总之,我们开发了一种用于分析未经分离的人类生物样本中聚糖的新概念性方法,在经过特定应用的临床验证后,它可能为糖基化疾病提供诊断和/或预测信息。