Suppr超能文献

多能干细胞及其衍生物的免疫原性。

Immunogenicity of pluripotent stem cells and their derivatives.

机构信息

Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA.

出版信息

Circ Res. 2013 Feb 1;112(3):549-61. doi: 10.1161/CIRCRESAHA.111.249243.

Abstract

The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.

摘要

多能干细胞自我更新并分化为所有体细胞类型的能力为再生医学和人类健康带来了广阔的前景。然而,在临床应用之前,需要进行大量的转化研究,以确保其治疗后代具有功能性和非致瘤性,具有稳定性且不会去分化,并且不会引发可能威胁其在体内存活的免疫反应。为此,深入了解其生物学、遗传和表观遗传构成以及抗原库对于预测其免疫原性以及开发确保成功的长期植入所需的策略至关重要。最近,人们对重编程体细胞将为个性化医学提供自体细胞治疗的期望提出了质疑。诱导多能干细胞显示出几种遗传和表观遗传异常,这些异常可能会促进体内的致瘤性和免疫原性。了解这些异常在诱导多能干细胞衍生物中的持续存在和影响对于允许临床医生在移植后预测移植物命运,并采取必要措施预防免疫排斥至关重要。随着多能干细胞治疗的临床试验即将到来,理解免疫障碍并设计安全、有效的策略来克服它们变得更加重要。这种克服干细胞治疗免疫障碍的方法可以利用从几十年的造血干细胞移植中获得的经过验证的知识。

相似文献

1
Immunogenicity of pluripotent stem cells and their derivatives.
Circ Res. 2013 Feb 1;112(3):549-61. doi: 10.1161/CIRCRESAHA.111.249243.
2
Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives.
Curr Stem Cell Res Ther. 2014 Jan;9(1):63-72. doi: 10.2174/1574888x113086660068.
3
Immunogenicity and allogenicity: a challenge of stem cell therapy.
J Cardiovasc Transl Res. 2009 Mar;2(1):130-8. doi: 10.1007/s12265-008-9062-9. Epub 2008 Sep 26.
4
Steps toward safe cell therapy using induced pluripotent stem cells.
Circ Res. 2013 Feb 1;112(3):523-33. doi: 10.1161/CIRCRESAHA.111.256149.
5
"Mouse Clone Model" for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells.
Stem Cell Res Ther. 2015 Dec 18;6:255. doi: 10.1186/s13287-015-0262-3.
6
Stem Cell Therapy and Immunological Rejection in Animal Models.
Curr Mol Pharmacol. 2016;9(4):284-288. doi: 10.2174/1874467208666150928153511.
7
Immunogenicity of induced pluripotent stem cells.
Circ Res. 2011 Sep 16;109(7):720-1. doi: 10.1161/RES.0b013e318232e187.
8
Pluripotent stem cell-based heart regeneration: from the developmental and immunological perspectives.
Birth Defects Res C Embryo Today. 2012 Mar;96(1):98-108. doi: 10.1002/bdrc.21004.
9
Pluripotent stem cell replacement approaches to treat type 1 diabetes.
Curr Opin Pharmacol. 2018 Dec;43:20-26. doi: 10.1016/j.coph.2018.07.007. Epub 2018 Jul 30.
10
Creating human organs in chimaera pigs: an ethical source of immunocompatible organs?
J Med Ethics. 2015 Dec;41(12):970-4. doi: 10.1136/medethics-2014-102224. Epub 2014 Nov 5.

引用本文的文献

4
Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.
J Tissue Eng. 2024 Sep 24;15:20417314241282476. doi: 10.1177/20417314241282476. eCollection 2024 Jan-Dec.
6
Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus.
Stem Cell Res Ther. 2024 Jun 27;15(1):188. doi: 10.1186/s13287-024-03780-7.
7
Advances in 3D Bioprinted Cardiac Tissue Using Stem Cell-Derived Cardiomyocytes.
Stem Cells Transl Med. 2024 May 14;13(5):425-435. doi: 10.1093/stcltm/szae014.
9
Applications of synthetic biology in medical and pharmaceutical fields.
Signal Transduct Target Ther. 2023 May 11;8(1):199. doi: 10.1038/s41392-023-01440-5.

本文引用的文献

1
Pluripotent stem cells: immune to the immune system?
Sci Transl Med. 2012 Dec 12;4(164):164ps25. doi: 10.1126/scitranslmed.3005090.
2
Tight control - decision-making during T cell-vascular endothelial cell interaction.
Front Immunol. 2012 Aug 27;3:279. doi: 10.3389/fimmu.2012.00279. eCollection 2012.
5
Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming.
Cell Stem Cell. 2012 Jan 6;10(1):16-28. doi: 10.1016/j.stem.2011.12.013.
6
Immunobiology of naïve and genetically modified HLA-class-I-knockdown human embryonic stem cells.
J Cell Sci. 2011 Sep 1;124(Pt 17):3029-37. doi: 10.1242/jcs.087718.
7
NK cell development, homeostasis and function: parallels with CD8⁺ T cells.
Nat Rev Immunol. 2011 Aug 26;11(10):645-57. doi: 10.1038/nri3044.
8
Direct conversion of human fibroblasts to dopaminergic neurons.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10343-8. doi: 10.1073/pnas.1105135108. Epub 2011 Jun 6.
9
Immunogenicity of induced pluripotent stem cells.
Nature. 2011 May 13;474(7350):212-5. doi: 10.1038/nature10135.
10
Derivation of human induced pluripotent stem cells for cardiovascular disease modeling.
Circ Res. 2011 Apr 29;108(9):1146-56. doi: 10.1161/CIRCRESAHA.111.240374.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验