School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
Biosensors (Basel). 2024 Aug 22;14(8):407. doi: 10.3390/bios14080407.
Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.
尽管干细胞在再生医学中有很有前景的治疗潜力,但定向分化和存活的挑战限制了其临床应用。纳米技术已成为解决这些挑战的强大工具,可以实现对干细胞命运的精确控制。特别是,纳米材料可以模拟细胞外基质并提供特定的线索来指导干细胞在纳米技术领域的分化和增殖。例如,最近的研究表明,纳米结构化表面和支架可以增强由细胞内调节和外部刺激(如活性氧 (ROS) 清除、自噬或电刺激)调节的干细胞谱系承诺。此外,基于纳米框架和上转换纳米粒子可用于递送至细胞分化和组织再生的生物活性分子、生长因子和遗传物质。纳米结构在干细胞研究中的日益使用导致了新的治疗方法的发展。因此,本综述概述了用于调节干细胞分化的纳米材料的最新进展,包括基于金属、碳和肽的策略。此外,我们通过关注提高分化效率和治疗效果,突出了这些纳米技术在干细胞治疗的临床应用中的潜力。我们相信,这篇综述将激发研究人员加强努力并加深理解,从而加速干细胞分化调控、制药行业的治疗应用和干细胞治疗的发展。
Biosensors (Basel). 2024-8-22
Stem Cell Res Ther. 2016-12-30
Adv Healthc Mater. 2015-5-26
Acc Chem Res. 2016-1-19
Int J Nanomedicine. 2012-4-27
Nanomedicine (Lond). 2012-11
Biomed Tech (Berl). 2022-12-16
Nanomedicine (Lond). 2013-3
Stem Cell Res Ther. 2025-7-1
Stem Cell Rev Rep. 2025-4-21
Nano Converg. 2024-6-26
ACS Appl Mater Interfaces. 2024-3-20
Cell Commun Signal. 2024-2-15
Biomater Res. 2023-11-4