文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米材料在调控干细胞分化及其治疗应用中的最新进展。

Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications.

机构信息

School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea.

出版信息

Biosensors (Basel). 2024 Aug 22;14(8):407. doi: 10.3390/bios14080407.


DOI:10.3390/bios14080407
PMID:39194636
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11352443/
Abstract

Challenges in directed differentiation and survival limit the clinical use of stem cells despite their promising therapeutic potential in regenerative medicine. Nanotechnology has emerged as a powerful tool to address these challenges and enable precise control over stem cell fate. In particular, nanomaterials can mimic an extracellular matrix and provide specific cues to guide stem cell differentiation and proliferation in the field of nanotechnology. For instance, recent studies have demonstrated that nanostructured surfaces and scaffolds can enhance stem cell lineage commitment modulated by intracellular regulation and external stimulation, such as reactive oxygen species (ROS) scavenging, autophagy, or electrical stimulation. Furthermore, nanoframework-based and upconversion nanoparticles can be used to deliver bioactive molecules, growth factors, and genetic materials to facilitate stem cell differentiation and tissue regeneration. The increasing use of nanostructures in stem cell research has led to the development of new therapeutic approaches. Therefore, this review provides an overview of recent advances in nanomaterials for modulating stem cell differentiation, including metal-, carbon-, and peptide-based strategies. In addition, we highlight the potential of these nano-enabled technologies for clinical applications of stem cell therapy by focusing on improving the differentiation efficiency and therapeutics. We believe that this review will inspire researchers to intensify their efforts and deepen their understanding, thereby accelerating the development of stem cell differentiation modulation, therapeutic applications in the pharmaceutical industry, and stem cell therapeutics.

摘要

尽管干细胞在再生医学中有很有前景的治疗潜力,但定向分化和存活的挑战限制了其临床应用。纳米技术已成为解决这些挑战的强大工具,可以实现对干细胞命运的精确控制。特别是,纳米材料可以模拟细胞外基质并提供特定的线索来指导干细胞在纳米技术领域的分化和增殖。例如,最近的研究表明,纳米结构化表面和支架可以增强由细胞内调节和外部刺激(如活性氧 (ROS) 清除、自噬或电刺激)调节的干细胞谱系承诺。此外,基于纳米框架和上转换纳米粒子可用于递送至细胞分化和组织再生的生物活性分子、生长因子和遗传物质。纳米结构在干细胞研究中的日益使用导致了新的治疗方法的发展。因此,本综述概述了用于调节干细胞分化的纳米材料的最新进展,包括基于金属、碳和肽的策略。此外,我们通过关注提高分化效率和治疗效果,突出了这些纳米技术在干细胞治疗的临床应用中的潜力。我们相信,这篇综述将激发研究人员加强努力并加深理解,从而加速干细胞分化调控、制药行业的治疗应用和干细胞治疗的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/ecca51e460eb/biosensors-14-00407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/4708456d9a65/biosensors-14-00407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/6c94b1a62cc6/biosensors-14-00407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/16065a35d8ef/biosensors-14-00407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/48df71ce0df9/biosensors-14-00407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/5ae761455a88/biosensors-14-00407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/4c2a0a98ff79/biosensors-14-00407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/ecca51e460eb/biosensors-14-00407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/4708456d9a65/biosensors-14-00407-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/6c94b1a62cc6/biosensors-14-00407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/16065a35d8ef/biosensors-14-00407-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/48df71ce0df9/biosensors-14-00407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/5ae761455a88/biosensors-14-00407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/4c2a0a98ff79/biosensors-14-00407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd1/11352443/ecca51e460eb/biosensors-14-00407-g007.jpg

相似文献

[1]
Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications.

Biosensors (Basel). 2024-8-22

[2]
The potential of nanoparticles in stem cell differentiation and further therapeutic applications.

Biotechnol J. 2016-12

[3]
Nanostructured scaffold as a determinant of stem cell fate.

Stem Cell Res Ther. 2016-12-30

[4]
Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.

J Cell Mol Med. 2012-9

[5]
Nanomaterials for Engineering Stem Cell Responses.

Adv Healthc Mater. 2015-5-26

[6]
Nanotechnology-Based Approaches for Guiding Neural Regeneration.

Acc Chem Res. 2016-1-19

[7]
Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface.

Int J Nanomedicine. 2012-4-27

[8]
Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration.

Nanomedicine (Lond). 2012-11

[9]
Nano-material utilization in stem cells for regenerative medicine.

Biomed Tech (Berl). 2022-12-16

[10]
Nanotechnology to drive stem cell commitment.

Nanomedicine (Lond). 2013-3

引用本文的文献

[1]
Pharmacological modulation of stem cells signaling pathway for therapeutic applications.

Stem Cell Res Ther. 2025-7-1

[2]
Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine.

Int J Mol Sci. 2025-6-11

[3]
Enhancing spinal cord injury repair through PTCH1-mediated neural progenitor cell differentiation induced by ion elemental-optimized layered double hydroxides.

Mater Today Bio. 2025-5-29

[4]
Advancements in Biomaterials for Stem Cell Differentiation.

Stem Cell Rev Rep. 2025-4-21

[5]
Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications.

Int J Mol Sci. 2024-12-11

本文引用的文献

[1]
NIR-Triggered Release of Nitric Oxide by Upconversion-Based Nanoplatforms to Enhance Osteogenic Differentiation of Mesenchymal Stem Cells for Osteoporosis Therapy.

Biomater Res. 2024-7-22

[2]
Engineering extracellular vesicles for ROS scavenging and tissue regeneration.

Nano Converg. 2024-6-26

[3]
3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

Biomacromolecules. 2024-6-10

[4]
Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation.

J Nanobiotechnology. 2024-3-27

[5]
Multifunctional Metal-Phenolic Composites Promote Efficient Periodontitis Treatment via Antibacterial and Osteogenic Properties.

ACS Appl Mater Interfaces. 2024-3-20

[6]
ATG5 attenuates inflammatory signaling in mouse embryonic stem cells to control differentiation.

Dev Cell. 2024-4-8

[7]
Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration.

Cell Commun Signal. 2024-2-15

[8]
Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application.

Biomater Res. 2023-11-4

[9]
Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine.

Nano Converg. 2023-10-21

[10]
Hierarchically patterned protein scaffolds with nano-fibrillar and micro-lamellar structures modulate neural stem cell homing and promote neuronal differentiation.

Biomater Sci. 2023-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索