Suppr超能文献

光固化3D打印技术作为促进缺氧相关疾病血管生成的先进工具。

Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.

作者信息

Lee Sang Yoon, Phuc Huynh Dai, Um Soong Ho, Mongrain Rosaire, Yoon Jeong-Kee, Bhang Suk Ho

机构信息

School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea.

Mechanical Engineering Department, McGill University, Montréal, QC, Canada.

出版信息

J Tissue Eng. 2024 Sep 24;15:20417314241282476. doi: 10.1177/20417314241282476. eCollection 2024 Jan-Dec.

Abstract

Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.

摘要

三维(3D)生物打印已成为一种颇具前景的策略,用于制造具有复杂结构的组织类似物,如血管网络。要实现这一点,需要生物墨水配方具备高度可打印的特性,并提供一个模拟天然细胞外基质的细胞友好型微环境。打印技术的快速发展不断扩展研究人员的能力,使他们能够克服现有的生物学障碍。本综述全面审视了基于紫外线的3D生物打印,它以与其他技术相比具有卓越的精度而闻名,并探讨了其在不同缺氧相关组织模型中诱导血管生成的应用。3D生物打印的高精度和快速光固化能力对于精确复制血管网络的复杂精细结构以及扩大营养物质和气体的扩散极限至关重要。解决缺氧相关疾病中血管结构缺失的问题至关重要,因为这可以显著改善氧气输送和整体组织健康。因此,高分辨率3D生物打印有助于在三维工程组织内创建血管结构,为解决缺氧相关疾病提供了一种潜在的解决方案。重点关注成功进行3D生物打印所必需的基本组成部分,包括近期研究中突出的细胞类型、生物墨水成分和生长因子。本综述提供的见解强调了利用3D打印技术通过刺激血管生成来解决缺氧相关疾病的广阔前景,补充了细胞疗法的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c163/11437565/2fe15f3f6f67/10.1177_20417314241282476-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验