Suppr超能文献

加速的边缘保持图像恢复,无边界伪影。

Accelerated edge-preserving image restoration without boundary artifacts.

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Image Process. 2013 May;22(5):2019-29. doi: 10.1109/TIP.2013.2244218. Epub 2013 Jan 30.

Abstract

To reduce blur in noisy images, regularized image restoration methods have been proposed that use nonquadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a noncirculant model could prevent these artifacts at the cost of increased computational complexity. In this paper, we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is noncirculant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved noniteratively using fast Fourier transforms (FFTs), eliminating the need for more expensive conjugate gradient-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers, including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1-norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate.

摘要

为了减少噪声图像中的模糊,已经提出了正则化图像恢复方法,这些方法使用非二次正则化项(如 l1 正则化或全变差)来抑制噪声,同时保留图像中的边缘。这些方法中的大多数都假设存在循环模糊(使用模糊核进行周期性卷积),由于循环模型的隐含周期性,这可能会导致图像边界处出现环绕伪影。使用非循环模型可以防止这些伪影,但代价是计算复杂度增加。在本文中,我们提出使用循环模糊模型结合掩蔽算子来防止环绕伪影。得到的模型是非循环的,因此我们提出了一种使用变量分裂和增广拉格朗日(AL)策略的有效算法。我们的变量分裂方案与 AL 框架和交替最小化相结合,导致可以使用快速傅里叶变换(FFT)非迭代地求解的简单线性系统,从而无需使用更昂贵的共轭梯度型求解器。所提出的方法还可以有效地处理各种凸正则化项,包括边缘保持(例如,全变差)和稀疏促进(例如,l1 范数)正则化项。模拟结果表明,所提出的方法具有快速的收敛性,并在循环模型不准确的边界处提高了图像质量。

相似文献

1
Accelerated edge-preserving image restoration without boundary artifacts.
IEEE Trans Image Process. 2013 May;22(5):2019-29. doi: 10.1109/TIP.2013.2244218. Epub 2013 Jan 30.
2
Efficient, Convergent SENSE MRI Reconstruction for Nonperiodic Boundary Conditions via Tridiagonal Solvers.
IEEE Trans Comput Imaging. 2017 Mar;3(1):11-21. doi: 10.1109/TCI.2016.2626999. Epub 2016 Nov 8.
3
Parallel MR image reconstruction using augmented Lagrangian methods.
IEEE Trans Med Imaging. 2011 Mar;30(3):694-706. doi: 10.1109/TMI.2010.2093536. Epub 2010 Nov 18.
5
Robust image deblurring with an inaccurate blur kernel.
IEEE Trans Image Process. 2012 Apr;21(4):1624-34. doi: 10.1109/TIP.2011.2171699. Epub 2011 Nov 8.
6
Efficient Huber-Markov edge-preserving image restoration.
IEEE Trans Image Process. 2006 Dec;15(12):3728-35. doi: 10.1109/tip.2006.881971.
7
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction.
IEEE Trans Med Imaging. 2012 Mar;31(3):677-88. doi: 10.1109/TMI.2011.2175233. Epub 2011 Nov 8.
8
Smoothly clipped absolute deviation (SCAD) regularization for compressed sensing MRI using an augmented Lagrangian scheme.
Magn Reson Imaging. 2013 Oct;31(8):1399-411. doi: 10.1016/j.mri.2013.05.010. Epub 2013 Jul 24.
9
Deconvolving images with unknown boundaries using the alternating direction method of multipliers.
IEEE Trans Image Process. 2013 Aug;22(8):3074-86. doi: 10.1109/TIP.2013.2258354. Epub 2013 Apr 16.
10
Hessian-based norm regularization for image restoration with biomedical applications.
IEEE Trans Image Process. 2012 Mar;21(3):983-95. doi: 10.1109/TIP.2011.2168232. Epub 2011 Sep 19.

引用本文的文献

1
Fast X-ray diffraction (XRD) tomography for enhanced identification of materials.
Sci Rep. 2022 Nov 9;12(1):19097. doi: 10.1038/s41598-022-23396-2.
3
Measure and model a 3-D space-variant PSF for fluorescence microscopy image deblurring.
Opt Express. 2018 May 28;26(11):14375-14391. doi: 10.1364/OE.26.014375.
4
Blurred image restoration using knife-edge function and optimal window Wiener filtering.
PLoS One. 2018 Jan 29;13(1):e0191833. doi: 10.1371/journal.pone.0191833. eCollection 2018.
5
Efficient, Convergent SENSE MRI Reconstruction for Nonperiodic Boundary Conditions via Tridiagonal Solvers.
IEEE Trans Comput Imaging. 2017 Mar;3(1):11-21. doi: 10.1109/TCI.2016.2626999. Epub 2016 Nov 8.
7
Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine.
Neuroimage. 2014 Aug 1;96:183-202. doi: 10.1016/j.neuroimage.2014.03.067. Epub 2014 Apr 1.

本文引用的文献

1
Deconvolving images with unknown boundaries using the alternating direction method of multipliers.
IEEE Trans Image Process. 2013 Aug;22(8):3074-86. doi: 10.1109/TIP.2013.2258354. Epub 2013 Apr 16.
2
Removing boundary artifacts for real-time iterated shrinkage deconvolution.
IEEE Trans Image Process. 2012 Apr;21(4):2329-34. doi: 10.1109/TIP.2011.2176344. Epub 2011 Nov 16.
3
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction.
IEEE Trans Med Imaging. 2012 Mar;31(3):677-88. doi: 10.1109/TMI.2011.2175233. Epub 2011 Nov 8.
4
Parallel MR image reconstruction using augmented Lagrangian methods.
IEEE Trans Med Imaging. 2011 Mar;30(3):694-706. doi: 10.1109/TMI.2010.2093536. Epub 2010 Nov 18.
5
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems.
IEEE Trans Image Process. 2011 Mar;20(3):681-95. doi: 10.1109/TIP.2010.2076294. Epub 2010 Sep 13.
6
Restoration of Poissonian images using alternating direction optimization.
IEEE Trans Image Process. 2010 Dec;19(12):3133-45. doi: 10.1109/TIP.2010.2053941. Epub 2010 Jun 28.
7
Fast image recovery using variable splitting and constrained optimization.
IEEE Trans Image Process. 2010 Sep;19(9):2345-56. doi: 10.1109/TIP.2010.2047910. Epub 2010 Apr 8.
8
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.
IEEE Trans Image Process. 2009 Nov;18(11):2419-34. doi: 10.1109/TIP.2009.2028250. Epub 2009 Jul 24.
9
A fast multilevel algorithm for wavelet-regularized image restoration.
IEEE Trans Image Process. 2009 Mar;18(3):509-23. doi: 10.1109/TIP.2008.2008073. Epub 2009 Feb 2.
10
Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.
IEEE Trans Image Process. 1999;8(5):688-99. doi: 10.1109/83.760336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验