Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
IEEE Trans Image Process. 2013 May;22(5):2019-29. doi: 10.1109/TIP.2013.2244218. Epub 2013 Jan 30.
To reduce blur in noisy images, regularized image restoration methods have been proposed that use nonquadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a noncirculant model could prevent these artifacts at the cost of increased computational complexity. In this paper, we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is noncirculant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved noniteratively using fast Fourier transforms (FFTs), eliminating the need for more expensive conjugate gradient-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers, including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1-norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate.
为了减少噪声图像中的模糊,已经提出了正则化图像恢复方法,这些方法使用非二次正则化项(如 l1 正则化或全变差)来抑制噪声,同时保留图像中的边缘。这些方法中的大多数都假设存在循环模糊(使用模糊核进行周期性卷积),由于循环模型的隐含周期性,这可能会导致图像边界处出现环绕伪影。使用非循环模型可以防止这些伪影,但代价是计算复杂度增加。在本文中,我们提出使用循环模糊模型结合掩蔽算子来防止环绕伪影。得到的模型是非循环的,因此我们提出了一种使用变量分裂和增广拉格朗日(AL)策略的有效算法。我们的变量分裂方案与 AL 框架和交替最小化相结合,导致可以使用快速傅里叶变换(FFT)非迭代地求解的简单线性系统,从而无需使用更昂贵的共轭梯度型求解器。所提出的方法还可以有效地处理各种凸正则化项,包括边缘保持(例如,全变差)和稀疏促进(例如,l1 范数)正则化项。模拟结果表明,所提出的方法具有快速的收敛性,并在循环模型不准确的边界处提高了图像质量。