Suppr超能文献

通过三对角求解器实现非周期边界条件下的高效收敛SENSE磁共振成像重建

Efficient, Convergent SENSE MRI Reconstruction for Nonperiodic Boundary Conditions via Tridiagonal Solvers.

作者信息

Le Mai, Fessler Jeffrey A

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA.

出版信息

IEEE Trans Comput Imaging. 2017 Mar;3(1):11-21. doi: 10.1109/TCI.2016.2626999. Epub 2016 Nov 8.

Abstract

Undersampling is an effective method for reducing scan acquisition time for MRI. Strategies for accelerated MRI such as parallel MRI and Compressed Sensing MRI present challenging image reconstruction problems with non-differentiable cost functions and computationally demanding operations. Variable splitting (VS) can simplify implementation of difficult image reconstruction problems, such as the combination of parallel MRI and Compressed Sensing, CS-SENSE-MRI. Combined with augmented Lagrangian (AL) and alternating minimization strategies, variable splitting can yield iterative minimization algorithms with simpler auxiliary variable updates. However, arbitrary variable splitting schemes are not guaranteed to converge. Many variable splitting strategies are combined with periodic boundary conditions. The resultant circulant Hessians enable 𝒪( log ) computation but may compromise image accuracy at the spatial boundaries. We propose two methods for CS-SENSE-MRI that use regularization with non-periodic boundary conditions to prevent wrap-around artifacts. Each algorithm computes one of the resulting variable updates efficiently in 𝒪() time using a parallelizable tridiagonal solver. AL-tridiag is a VS method designed to enable efficient computation for non-periodic boundary conditions. Another proposed algorithm, ADMM-tridiag, uses a similar VS scheme but also ensures convergence to a minimizer of the proposed cost function using the Alternating Direction Method of Multipliers (ADMM). AL-tridiag and ADMM-tridiag show speeds competitive with previous VS CS-SENSE-MRI reconstruction algorithm AL-P2. We also apply the tridiagonal VS approach to a simple image inpainting problem.

摘要

欠采样是一种减少磁共振成像(MRI)扫描采集时间的有效方法。诸如并行MRI和压缩感知MRI等加速MRI策略带来了具有不可微代价函数和计算量大的操作的具有挑战性的图像重建问题。变量分裂(VS)可以简化诸如并行MRI和压缩感知(CS-SENSE-MRI)组合等困难图像重建问题的实现。结合增广拉格朗日(AL)和交替最小化策略,变量分裂可以产生具有更简单辅助变量更新的迭代最小化算法。然而,任意的变量分裂方案不能保证收敛。许多变量分裂策略与周期性边界条件相结合。由此产生的循环海森矩阵实现了𝒪(log)计算,但可能会在空间边界处损害图像精度。我们提出了两种用于CS-SENSE-MRI的方法,它们使用非周期性边界条件的正则化来防止卷绕伪影。每种算法都使用可并行化的三对角求解器在𝒪()时间内有效地计算其中一个结果变量更新。AL-tridiag是一种VS方法,旨在实现非周期性边界条件的高效计算。另一种提出的算法ADMM-tridiag使用类似的VS方案,但还使用乘子交替方向法(ADMM)确保收敛到所提出代价函数的极小值。AL-tridiag和ADMM-tridiag显示出与先前的VS CS-SENSE-MRI重建算法AL-P2具有竞争力的速度。我们还将三对角VS方法应用于一个简单的图像修复问题。

相似文献

1
Efficient, Convergent SENSE MRI Reconstruction for Nonperiodic Boundary Conditions via Tridiagonal Solvers.
IEEE Trans Comput Imaging. 2017 Mar;3(1):11-21. doi: 10.1109/TCI.2016.2626999. Epub 2016 Nov 8.
2
Accelerated edge-preserving image restoration without boundary artifacts.
IEEE Trans Image Process. 2013 May;22(5):2019-29. doi: 10.1109/TIP.2013.2244218. Epub 2013 Jan 30.
3
Deconvolving images with unknown boundaries using the alternating direction method of multipliers.
IEEE Trans Image Process. 2013 Aug;22(8):3074-86. doi: 10.1109/TIP.2013.2258354. Epub 2013 Apr 16.
4
Smoothly clipped absolute deviation (SCAD) regularization for compressed sensing MRI using an augmented Lagrangian scheme.
Magn Reson Imaging. 2013 Oct;31(8):1399-411. doi: 10.1016/j.mri.2013.05.010. Epub 2013 Jul 24.
5
Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm.
Magn Reson Imaging. 2013 Sep;31(7):1218-27. doi: 10.1016/j.mri.2012.12.003. Epub 2013 May 16.
6
Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers.
Biomed Eng Online. 2017 Apr 27;16(1):53. doi: 10.1186/s12938-017-0343-x.
7
An alternating direction algorithm for total variation reconstruction of distributed parameters.
IEEE Trans Image Process. 2012 Jun;21(6):3004-16. doi: 10.1109/TIP.2012.2188033. Epub 2012 Feb 14.
8
Vectorial total generalized variation for accelerated multi-channel multi-contrast MRI.
Magn Reson Imaging. 2016 Oct;34(8):1161-70. doi: 10.1016/j.mri.2016.05.014. Epub 2016 Jun 2.
9
ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing.
IEEE Trans Pattern Anal Mach Intell. 2020 Mar;42(3):521-538. doi: 10.1109/TPAMI.2018.2883941. Epub 2018 Nov 28.
10
Compressed sensing magnetic resonance imaging based on shearlet sparsity and nonlocal total variation.
J Med Imaging (Bellingham). 2017 Apr;4(2):026003. doi: 10.1117/1.JMI.4.2.026003. Epub 2017 Jun 28.

引用本文的文献

1
Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model.
IEEE Trans Comput Imaging. 2019 Mar;5(1):17-26. doi: 10.1109/TCI.2018.2882089. Epub 2018 Nov 19.
2
Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification.
Med Phys. 2018 Oct;45(10):4529-4540. doi: 10.1002/mp.13118. Epub 2018 Aug 31.

本文引用的文献

1
Deconvolving images with unknown boundaries using the alternating direction method of multipliers.
IEEE Trans Image Process. 2013 Aug;22(8):3074-86. doi: 10.1109/TIP.2013.2258354. Epub 2013 Apr 16.
2
Accelerated edge-preserving image restoration without boundary artifacts.
IEEE Trans Image Process. 2013 May;22(5):2019-29. doi: 10.1109/TIP.2013.2244218. Epub 2013 Jan 30.
3
Accelerated regularized estimation of MR coil sensitivities using augmented Lagrangian methods.
IEEE Trans Med Imaging. 2013 Mar;32(3):556-64. doi: 10.1109/TMI.2012.2229711. Epub 2012 Nov 22.
4
Parallel MR image reconstruction using augmented Lagrangian methods.
IEEE Trans Med Imaging. 2011 Mar;30(3):694-706. doi: 10.1109/TMI.2010.2093536. Epub 2010 Nov 18.
5
Computational acceleration for MR image reconstruction in partially parallel imaging.
IEEE Trans Med Imaging. 2011 May;30(5):1055-63. doi: 10.1109/TMI.2010.2073717. Epub 2010 Sep 7.
6
Fast image recovery using variable splitting and constrained optimization.
IEEE Trans Image Process. 2010 Sep;19(9):2345-56. doi: 10.1109/TIP.2010.2047910. Epub 2010 Apr 8.
7
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.
IEEE Trans Image Process. 2009 Nov;18(11):2419-34. doi: 10.1109/TIP.2009.2028250. Epub 2009 Jul 24.
8
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
9
SENSE: sensitivity encoding for fast MRI.
Magn Reson Med. 1999 Nov;42(5):952-62.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验