Suppr超能文献

生物和化学反应网络中的分子代码。

Molecular codes in biological and chemical reaction networks.

机构信息

Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Jena, Germany.

出版信息

PLoS One. 2013;8(1):e54694. doi: 10.1371/journal.pone.0054694. Epub 2013 Jan 23.

Abstract

Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

摘要

香农的信息论在分析生物信息方面取得了非常成功的应用。然而,该理论忽略了语义和语用方面,因此不能直接用于区分能够处理“有意义”信息的(生物)化学系统和不能处理的系统。在这里,我们提出了一种通过分析反应网络实现分子代码的能力来评估系统语义能力的方法。我们分析了化学系统(火星大气化学和各种燃烧化学)、生化系统(基因表达、基因翻译和磷酸化信号级联)、人工化学和随机反应网络的模型。我们的研究表明,不同的化学系统具有不同的语义能力。在火星大气化学模型、研究的燃烧化学和高度连接的随机网络中,即这些化学系统中无法实现分子代码,没有发现语义能力。在研究的生化系统和二次反应数是物种数两倍的随机反应网络中,发现了高语义能力。我们得出结论,我们的方法可用于评估化学系统的信息处理能力,因此可能是理解有意义信息的起源和进化的有用工具,例如在生命起源的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e634/3553058/0744fdd97ab0/pone.0054694.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验