Suppr超能文献

GAMLSS中自动平滑参数选择及其在百分位数估计中的应用

Automatic smoothing parameter selection in GAMLSS with an application to centile estimation.

作者信息

Rigby Robert A, Stasinopoulos Dimitrios M

机构信息

STORM FLSC, London Metropolitan University, London, UK.

STORM FLSC, London Metropolitan University, London, UK

出版信息

Stat Methods Med Res. 2014 Aug;23(4):318-32. doi: 10.1177/0962280212473302. Epub 2013 Feb 1.

Abstract

A method for automatic selection of the smoothing parameters in a generalised additive model for location, scale and shape (GAMLSS) model is introduced. The method uses a P-spline representation of the smoothing terms to express them as random effect terms with an internal (or local) maximum likelihood estimation on the predictor scale of each distribution parameter to estimate its smoothing parameters. This provides a fast method for estimating multiple smoothing parameters. The method is applied to centile estimation where all four parameters of a distribution for the response variable are modelled as smooth functions of a transformed explanatory variable x This allows smooth modelling of the location, scale, skewness and kurtosis parameters of the response variable distribution as functions of x.

摘要

介绍了一种在位置、尺度和形状广义相加模型(GAMLSS)中自动选择平滑参数的方法。该方法使用平滑项的P样条表示,将其表示为随机效应项,并在每个分布参数的预测变量尺度上进行内部(或局部)最大似然估计,以估计其平滑参数。这提供了一种估计多个平滑参数的快速方法。该方法应用于百分位数估计,其中响应变量分布的所有四个参数都被建模为变换后的解释变量x的平滑函数。这允许将响应变量分布的位置、尺度、偏度和峰度参数作为x的函数进行平滑建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验