Suppr超能文献

对二次谐波图像中骨骼肌缺陷的定量评估。

Quantitative evaluation of skeletal muscle defects in second harmonic generation images.

机构信息

National Institute of Arthritis and Musculoskeletal and Skin Diseases, Light Imaging Section, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Biomed Opt. 2013 Feb;18(2):26005. doi: 10.1117/1.JBO.18.2.026005.

Abstract

Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

摘要

骨骼肌病变导致肌原纤维的正常周期性排列出现不规则。为了评估肌肉健康、比较活检结果以及评估治疗效果和疾病进展,有必要对肌肉形态进行客观分级。为了便于进行这种定量分析,我们开发了一种快速、敏感、自动的成像分析软件。它通过结合纹理特征和傅里叶变换(FT)技术来检测主要和次要的形态变化。我们将该工具应用于肌肉纤维的二次谐波产生(SHG)图像,这些图像可以显示重复的肌球蛋白带。然后在 MATLAB 中使用 Haralick 灰度共生矩阵计算纹理特征。通过 FT 和曲线拟合方法从纹理相关图中提取两个分数。该技术的灵敏度在人类成年和婴儿肌肉活检以及小鼠肌肉样本的 SHG 图像上进行了测试。这些分数与肌肉纤维状况密切相关。我们将该软件命名为 MARS(肌肉评估和评分)。它可以自动执行,即使是细微的缺陷也非常敏感。我们提出 MARS 作为一种强大且无偏的工具来评估肌肉健康。

相似文献

1
Quantitative evaluation of skeletal muscle defects in second harmonic generation images.
J Biomed Opt. 2013 Feb;18(2):26005. doi: 10.1117/1.JBO.18.2.026005.
3
Demonstration of flat-top beam illumination in widefield multiphoton microscopy.
J Biomed Opt. 2019 Nov;25(1):1-8. doi: 10.1117/1.JBO.25.1.014503.
4
Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle.
Biophys J. 2006 Jan 1;90(1):328-39. doi: 10.1529/biophysj.105.066944. Epub 2005 Oct 7.
6
Second harmonic imaging of intrinsic signals in muscle fibers in situ.
J Biomed Opt. 2004 Sep-Oct;9(5):882-92. doi: 10.1117/1.1783354.
7
CAS3D: 3D quantitative morphometry on Second Harmonic Generation image volumes from single skeletal muscle fibers.
Comput Biol Med. 2024 Aug;178:108618. doi: 10.1016/j.compbiomed.2024.108618. Epub 2024 Jun 25.
8
A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle.
Neuromuscul Disord. 2014 Jul;24(7):596-603. doi: 10.1016/j.nmd.2014.04.011. Epub 2014 May 4.
9
Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres.
Biophys J. 2006 Jan 15;90(2):693-703. doi: 10.1529/biophysj.105.071555. Epub 2005 Oct 28.

引用本文的文献

1
Detyrosinated microtubule arrays drive myofibrillar malformations in muscle fibers.
Front Cell Dev Biol. 2023 Aug 25;11:1209542. doi: 10.3389/fcell.2023.1209542. eCollection 2023.
2
Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells.
Methods Mol Biol. 2023;2644:267-285. doi: 10.1007/978-1-0716-3052-5_17.
5
Passive stiffness of fibrotic skeletal muscle in mdx mice relates to collagen architecture.
J Physiol. 2021 Feb;599(3):943-962. doi: 10.1113/JP280656. Epub 2020 Dec 18.
9
Quantitative, Label-Free Evaluation of Tissue-Engineered Skeletal Muscle Through Multiphoton Microscopy.
Tissue Eng Part C Methods. 2017 Oct;23(10):616-626. doi: 10.1089/ten.TEC.2017.0284. Epub 2017 Sep 20.
10
Skeletal Muscle Tissue Clearing for LacZ and Fluorescent Reporters, and Immunofluorescence Staining.
Methods Mol Biol. 2016;1460:129-40. doi: 10.1007/978-1-4939-3810-0_10.

本文引用的文献

1
Early pathologic changes and responses to treatment in patients with later-onset Pompe disease.
Pediatr Neurol. 2012 Mar;46(3):168-71. doi: 10.1016/j.pediatrneurol.2011.12.010.
2
Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.
IEEE Trans Biomed Eng. 2012 Jan;59(1):39-44. doi: 10.1109/TBME.2011.2167325. Epub 2011 Sep 8.
6
Pompe disease in infants: improving the prognosis by newborn screening and early treatment.
Pediatrics. 2009 Dec;124(6):e1116-25. doi: 10.1542/peds.2008-3667.
7
Measurement of muscle disease by quantitative second-harmonic generation imaging.
J Biomed Opt. 2008 Jul-Aug;13(4):044018. doi: 10.1117/1.2967536.
9
Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans.
Nature. 2008 Aug 7;454(7205):784-8. doi: 10.1038/nature07104. Epub 2008 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验