Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69115 Heidelberg, Germany.
IEEE Trans Biomed Eng. 2012 Jan;59(1):39-44. doi: 10.1109/TBME.2011.2167325. Epub 2011 Sep 8.
Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases.
实际上,所有的慢性疾病都具有组织重构的特征,这种重构通过改变正常的器官结构来改变器官和细胞功能。一些形态学改变是不可逆的,即使在细胞水平上,也会导致疾病的进展。早期诊断以对组织改变进行分类,以及在同一患者中监测细胞结构紊乱在治疗中的进展或缓解,这是一个新兴的领域。它们对空间分辨率提出了巨大挑战,需要先进的成像技术和策略来检测形态变化。我们使用结合二次谐波产生(SHG)显微镜和自动图像处理的方法,随着年龄的增长,在遗传性杜氏肌营养不良症(mdx 小鼠)的动物模型中定量评估形态。来自组织切片的多光子 XYZ 图像堆栈揭示了不同细胞骨架结构尺度下老年 mdx 小鼠肌肉的巨大形态偏差:细胞口径不规则,细胞内的肌原纤维扭曲,肌节晶格的破坏(检测为“游标卡尺”)数量比健康小鼠的样本更多。在年轻的 mdx 小鼠中,这种改变只是轻微的。适用于 SHG 数据的边界张量方法是一种快速定量形态测量的合适方法。自动算法的整体检测性能与手动“肉眼”检测非常吻合,后者耗时且容易出现主观错误。我们的算法在时间上的性能优于手动检测,同时具有相似的可靠性。这种方法将是实施临床图像数据库的重要前提,以诊断和监测慢性(肌肉)疾病中的特定形态改变。