Harriot Anicca D, Altair Morris Tessa, Vanegas Camilo, Kallenbach Jacob, Pinto Kaylie, Joca Humberto C, Moutin Marie-Jo, Shi Guoli, Ursitti Jeanine A, Grosberg Anna, Ward Christopher W
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States.
Center for Complex Biological Systems, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States.
Front Cell Dev Biol. 2023 Aug 25;11:1209542. doi: 10.3389/fcell.2023.1209542. eCollection 2023.
Altered myofibrillar structure is a consequence of dystrophic pathology that impairs skeletal muscle contractile function and increases susceptibility to contraction injury. In murine Duchenne muscular dystrophy (), myofibrillar alterations are abundant in advanced pathology (>4 months), an age where we formerly established densified microtubule (MT) arrays enriched in detyrosinated (deTyr) tubulin as negative disease modifiers impacting cell mechanics and mechanotransduction. Given the essential role of deTyr-enriched MT arrays in myofibrillar growth, maintenance, and repair, we examined the increased abundance of these arrays as a potential mechanism for these myofibrillar alterations. Here we find an increase in deTyr-tubulin as an early event in dystrophic pathology (4 weeks) with no evidence myofibrillar alterations. At 16 weeks, we show deTyr-enriched MT arrays significantly densified and co-localized to areas of myofibrillar malformation. Profiling the enzyme complexes responsible for deTyr-tubulin, we identify vasohibin 2 (VASH2) and small vasohibin binding protein (SVBP) significantly elevated in the muscle at 4 weeks. Using the genetic increase in VASH2/SVBP expression in 4 weeks wild-type mice we find densified deTyr-enriched MT arrays that co-segregate with myofibrillar malformations similar to those in the 16 weeks . Given that no changes in sarcomere organization were identified in fibers expressing sfGFP as a control, we conclude that disease-dependent densification of deTyr-enriched MT arrays underscores the altered myofibrillar structure in dystrophic skeletal muscle fibers.
肌原纤维结构改变是营养不良性病理变化的结果,这种病理变化会损害骨骼肌收缩功能,并增加对收缩损伤的易感性。在小鼠杜兴氏肌营养不良症(DMD)中,肌原纤维改变在晚期病理阶段(>4个月)很常见,在这个年龄段,我们之前发现富含去酪氨酸化(deTyr)微管蛋白的致密微管(MT)阵列作为影响细胞力学和机械转导的负性疾病修饰因子。鉴于富含deTyr的MT阵列在肌原纤维生长、维持和修复中的重要作用,我们研究了这些阵列丰度增加作为这些肌原纤维改变的潜在机制。在这里,我们发现去酪氨酸化微管蛋白增加是营养不良性病理变化(4周)的早期事件,没有肌原纤维改变的证据。在16周时,我们发现富含deTyr的MT阵列显著致密,并与肌原纤维畸形区域共定位。对负责去酪氨酸化微管蛋白的酶复合物进行分析,我们发现在4周时,血管抑制素2(VASH2)和小血管抑制素结合蛋白(SVBP)在DMD肌肉中显著升高。利用4周龄野生型小鼠中VASH2/SVBP表达的基因增加,我们发现致密的富含deTyr的MT阵列与肌原纤维畸形共分离,类似于16周龄DMD小鼠中的情况。鉴于在表达sfGFP作为对照的纤维中未发现肌节组织有变化,我们得出结论,疾病依赖性的富含deTyr的MT阵列致密化突出了营养不良性骨骼肌纤维中肌原纤维结构的改变。