Suppr超能文献

肌营养不良症模型小鼠纤维化骨骼肌的被动僵硬与胶原结构有关。

Passive stiffness of fibrotic skeletal muscle in mdx mice relates to collagen architecture.

机构信息

Department of Neurobiology, Physiology, and Behavior, University of California Davis.

Department of Physical Medicine and Rehabilitation, University of California Davis.

出版信息

J Physiol. 2021 Feb;599(3):943-962. doi: 10.1113/JP280656. Epub 2020 Dec 18.

Abstract

KEY POINTS

The amount of fibrotic material in dystrophic mouse muscles relates to contractile function, but not passive function. Collagen fibres in skeletal muscle are associated with increased passive muscle stiffness in fibrotic muscles. The alignment of collagen is independently associated with passive stiffness in dystrophic skeletal muscles. These outcomes demonstrate that collagen architecture rather than collagen content should be a target of anti-fibrotic therapies to treat muscle stiffness.

ABSTRACT

Fibrosis is prominent in many skeletal muscle pathologies including dystrophies, neurological disorders, cachexia, chronic kidney disease, sarcopenia and metabolic disorders. Fibrosis in muscle is associated with decreased contractile forces and increased passive stiffness that limits joint mobility leading to contractures. However, the assumption that more fibrotic material is directly related to decreased function has not held true. Here we utilize novel measurement of extracellular matrix (ECM) and collagen architecture to relate ECM form to muscle function. We used mdx mice, a model for Duchenne muscular dystrophy that becomes fibrotic, and wildtype mice. In this model, extensor digitorum longus (EDL) muscle was significantly stiffer, but with similar total collagen, while the soleus muscle did not change stiffness, but increased collagen. The stiffness of the EDL was associated with increased collagen crosslinking as determined by collagen solubility. Measurement of ECM alignment using polarized light microscopy showed a robust relationship between stiffness and alignment for wildtype muscle that broke down in mdx muscles. Direct visualization of large collagen fibres with second harmonic generation imaging revealed their relative abundance in stiff muscles. Collagen fibre alignment was linked to stiffness across all muscles investigated and the most significant factor in a multiple linear regression-based model of muscle stiffness from ECM parameters. This work establishes novel characteristics of skeletal muscle ECM architecture and provides evidence for a mechanical function of collagen fibres in muscle. This finding suggests that anti-fibrotic strategies to enhance muscle function and excessive stiffness should target large collagen fibres and their alignment rather than total collagen.

摘要

关键点

营养不良小鼠肌肉中的纤维组织含量与收缩功能有关,但与被动功能无关。在纤维化肌肉中,骨骼肌中的胶原纤维与被动肌肉僵硬增加有关。胶原的排列与营养不良骨骼肌的被动僵硬独立相关。这些结果表明,胶原结构而不是胶原含量应该成为抗纤维化治疗的目标,以治疗肌肉僵硬。

摘要

纤维化在许多骨骼肌疾病中都很明显,包括营养不良、神经紊乱、恶病质、慢性肾病、肌肉减少症和代谢紊乱。肌肉中的纤维化与收缩力降低和被动僵硬增加有关,这会限制关节活动度,导致挛缩。然而,纤维组织越多与功能下降直接相关的假设并不成立。在这里,我们利用细胞外基质 (ECM) 和胶原结构的新测量方法,将 ECM 形态与肌肉功能联系起来。我们使用 mdx 小鼠,这是一种营养不良的模型,会发生纤维化,以及野生型小鼠。在这个模型中,伸趾长肌 (EDL) 肌肉明显更硬,但总胶原相似,而比目鱼肌肌肉没有改变僵硬度,但增加了胶原。EDL 肌肉的僵硬度与胶原交联的增加有关,这是通过胶原溶解度来确定的。偏振光显微镜测量 ECM 排列显示,野生型肌肉的僵硬度与排列之间存在很强的关系,但在 mdx 肌肉中这种关系破裂。使用二次谐波产生成像直接观察大的胶原纤维显示出它们在僵硬肌肉中的相对丰度。胶原纤维排列与所有研究肌肉的僵硬度相关,并且在基于 ECM 参数的肌肉僵硬多线性回归模型中是最重要的因素。这项工作确立了骨骼肌 ECM 结构的新特征,并为肌肉中胶原纤维的机械功能提供了证据。这一发现表明,为了增强肌肉功能和过度僵硬,抗纤维化策略应该针对大的胶原纤维及其排列,而不是总胶原。

相似文献

1
Passive stiffness of fibrotic skeletal muscle in mdx mice relates to collagen architecture.
J Physiol. 2021 Feb;599(3):943-962. doi: 10.1113/JP280656. Epub 2020 Dec 18.
2
Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice.
Am J Physiol Cell Physiol. 2014 May 15;306(10):C889-98. doi: 10.1152/ajpcell.00383.2013. Epub 2014 Mar 5.
4
Strain-dependent dynamic re-alignment of collagen fibers in skeletal muscle extracellular matrix.
Acta Biomater. 2024 Oct 1;187:227-241. doi: 10.1016/j.actbio.2024.08.035. Epub 2024 Aug 30.
5
In dystrophic hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation.
Am J Physiol Cell Physiol. 2024 Oct 1;327(4):C1035-C1050. doi: 10.1152/ajpcell.00320.2024. Epub 2024 Aug 19.
6
Diaphragm muscle fibrosis involves changes in collagen organization with mechanical implications in Duchenne muscular dystrophy.
J Appl Physiol (1985). 2022 Mar 1;132(3):653-672. doi: 10.1152/japplphysiol.00248.2021. Epub 2022 Jan 20.
8
Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
J Appl Physiol (1985). 2017 Apr 1;122(4):828-843. doi: 10.1152/japplphysiol.00776.2015. Epub 2017 Jan 5.
10
Force and stiffness of old dystrophic (mdx) mouse skeletal muscles.
Muscle Nerve. 1998 Apr;21(4):536-9. doi: 10.1002/(sici)1097-4598(199804)21:4<536::aid-mus15>3.0.co;2-v.

引用本文的文献

4
Hidden pathway: the role of extracellular matrix in type 2 diabetes mellitus-related sarcopenia.
Front Endocrinol (Lausanne). 2025 Apr 16;16:1560396. doi: 10.3389/fendo.2025.1560396. eCollection 2025.
7
ACL injury management: a comprehensive review of novel biotherapeutics.
Front Bioeng Biotechnol. 2024 Nov 22;12:1455225. doi: 10.3389/fbioe.2024.1455225. eCollection 2024.
9
Strain-dependent dynamic re-alignment of collagen fibers in skeletal muscle extracellular matrix.
Acta Biomater. 2024 Oct 1;187:227-241. doi: 10.1016/j.actbio.2024.08.035. Epub 2024 Aug 30.
10
Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2406787121. doi: 10.1073/pnas.2406787121. Epub 2024 Aug 20.

本文引用的文献

1
Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction.
J Physiol. 2020 Jul;598(13):2669-2683. doi: 10.1113/JP279595. Epub 2020 Jun 3.
2
Harnessing Fiber Diameter-Dependent Effects of Myoblasts Toward Biomimetic Scaffold-Based Skeletal Muscle Regeneration.
Front Bioeng Biotechnol. 2020 Mar 24;8:203. doi: 10.3389/fbioe.2020.00203. eCollection 2020.
3
Non-linear Scaling of Passive Mechanical Properties in Fibers, Bundles, Fascicles and Whole Rabbit Muscles.
Front Physiol. 2020 Mar 20;11:211. doi: 10.3389/fphys.2020.00211. eCollection 2020.
4
Conference report on contractures in musculoskeletal and neurological conditions.
Muscle Nerve. 2020 Jun;61(6):740-744. doi: 10.1002/mus.26845. Epub 2020 Mar 7.
5
Single-cell transcriptional profiles in human skeletal muscle.
Sci Rep. 2020 Jan 14;10(1):229. doi: 10.1038/s41598-019-57110-6.
6
Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy.
Connect Tissue Res. 2021 May;62(3):287-298. doi: 10.1080/03008207.2019.1694011. Epub 2019 Nov 28.
8
A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue.
J Mech Behav Biomed Mater. 2019 Sep;97:171-186. doi: 10.1016/j.jmbbm.2019.05.012. Epub 2019 May 13.
9
Fiber alignment drives changes in architectural and mechanical features in collagen matrices.
PLoS One. 2019 May 15;14(5):e0216537. doi: 10.1371/journal.pone.0216537. eCollection 2019.
10
Polarization-resolved second harmonic microscopy of skeletal muscle in sepsis.
Biomed Opt Express. 2018 Nov 19;9(12):6350-6358. doi: 10.1364/BOE.9.006350. eCollection 2018 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验