Suppr超能文献

蛋白质和核蛋白的拉曼光谱

Raman spectroscopy of proteins and nucleoproteins.

作者信息

Nemecek Daniel, Stepanek Josef, Thomas George J

机构信息

National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Curr Protoc Protein Sci. 2013;Chapter 17:Unit17.8. doi: 10.1002/0471140864.ps1708s71.

Abstract

A protein Raman spectrum comprises discrete bands representing vibrational modes of the peptide backbone and its side chains. The spectral positions, intensities, and polarizations of the Raman bands are sensitive to protein secondary, tertiary, and quaternary structures and to side-chain orientations and local environments. In favorable cases, the Raman spectrum serves as an empirical signature of protein three-dimensional structure, intramolecular dynamics, and intermolecular interactions. Quantitative analysis of Raman spectral series can be further boosted by advanced statistical approaches of factor analysis that allow fitting of specific theoretical models while reducing the amount of analyzed data. Here, the strengths of Raman spectroscopy are illustrated by considering recent applications from the authors' work that address (1) subunit folding and recognition in assembly of the icosahedral bacteriophages, (2) orientations of subunit main chains and side chains in native filamentous viruses, (3) roles of cysteine hydrogen bonding in the folding, assembly, and function of virus structural proteins, and (4) structural determinants of protein/DNA recognition in gene regulatory complexes. Conventional Raman and polarized Raman techniques are surveyed.

摘要

蛋白质拉曼光谱由代表肽主链及其侧链振动模式的离散谱带组成。拉曼谱带的光谱位置、强度和偏振对蛋白质的二级、三级和四级结构以及侧链取向和局部环境敏感。在有利的情况下,拉曼光谱可作为蛋白质三维结构、分子内动力学和分子间相互作用的经验特征。通过先进的因子分析统计方法可以进一步加强对拉曼光谱系列的定量分析,该方法允许拟合特定的理论模型,同时减少分析数据的量。在此,通过考虑作者工作中最近的应用来说明拉曼光谱的优势,这些应用涉及:(1)二十面体噬菌体组装中的亚基折叠和识别;(2)天然丝状病毒中亚基主链和侧链的取向;(3)半胱氨酸氢键在病毒结构蛋白折叠、组装和功能中的作用;以及(4)基因调控复合物中蛋白质/DNA识别的结构决定因素。对传统拉曼和偏振拉曼技术进行了综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验