Suppr超能文献

重新布线乳球菌以生产乙醇。

Rewiring Lactococcus lactis for ethanol production.

机构信息

Department of Systems Biology, Center for Systems Microbiology, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 2013 Apr;79(8):2512-8. doi: 10.1128/AEM.03623-12. Epub 2013 Feb 1.

Abstract

Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45-54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE).

摘要

乳酸菌(LAB)以其对有机酸和醇的高耐受性而闻名(R. S. Gold、M. M. Meagher、R. Hutkins 和 T. Conway,J. Ind. Microbiol. 10:45-54, 1992),并且有可能作为这些化合物生产的平台生物。在本研究中,我们试图将乳酸菌模式生物乳球菌(Lactococcus lactis)的代谢途径重新定向为乙醇生产。引入并表达了经过密码子优化的运动发酵单胞菌丙酮酸脱羧酶(PDC),其来自不同菌株背景的合成启动子。在野生型 L. lactis 菌株 MG1363 利用葡萄糖生长时,引入 PDC 后仅获得少量乙醇,可能是由于天然醇脱氢酶活性较低。当相同的菌株在麦芽糖上生长时,乙醇是主要产物,而形成的乳酸盐、甲酸盐和乙酸盐较少。在葡萄糖生长时,敲除乳酸脱氢酶基因 ldhX、ldhB 和 ldh,并引入经过密码子优化的运动发酵单胞菌醇脱氢酶(ADHB)除了 PDC 之外,还导致高产量的乙醇形成,只有少量的副产物形成。最后,通过进一步敲除磷酸转乙酰酶(PTA)和天然醇脱氢酶(ADHE),获得了以乙醇为唯一观察到的发酵产物的菌株。

相似文献

1
Rewiring Lactococcus lactis for ethanol production.
Appl Environ Microbiol. 2013 Apr;79(8):2512-8. doi: 10.1128/AEM.03623-12. Epub 2013 Feb 1.
2
Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis.
J Ind Microbiol Biotechnol. 2003 May;30(5):315-21. doi: 10.1007/s10295-003-0055-z. Epub 2003 May 15.
4
High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
Appl Environ Microbiol. 2011 Oct;77(19):6826-35. doi: 10.1128/AEM.05544-11. Epub 2011 Aug 12.
6
Optimization of metabolic pathways for bioconversion of lignocellulose to ethanol through genetic engineering.
Biotechnol Adv. 2009 Sep-Oct;27(5):593-8. doi: 10.1016/j.biotechadv.2009.04.021. Epub 2009 May 3.
8
A new Zymomonas mobilis platform strain for the efficient production of chemicals.
Microb Cell Fact. 2024 May 22;23(1):143. doi: 10.1186/s12934-024-02419-9.
10
High-level acetaldehyde production in Lactococcus lactis by metabolic engineering.
Appl Environ Microbiol. 2005 Feb;71(2):1109-13. doi: 10.1128/AEM.71.2.1109-1113.2005.

引用本文的文献

1
Scrutinizing a mutant with enhanced capacity for extracellular electron transfer reveals a unique role for a novel type-II NADH dehydrogenase.
Appl Environ Microbiol. 2024 May 21;90(5):e0041424. doi: 10.1128/aem.00414-24. Epub 2024 Apr 2.
2
Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer.
Microb Biotechnol. 2023 Jun;16(6):1277-1292. doi: 10.1111/1751-7915.14229. Epub 2023 Mar 1.
3
Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review.
Microorganisms. 2022 May 31;10(6):1132. doi: 10.3390/microorganisms10061132.
5
Efficient Production of Pyruvate Using Metabolically Engineered .
Front Bioeng Biotechnol. 2021 Jan 6;8:611701. doi: 10.3389/fbioe.2020.611701. eCollection 2020.
6
Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol.
Biotechnol Biofuels. 2020 Mar 11;13:45. doi: 10.1186/s13068-020-01689-w. eCollection 2020.
7
Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by .
J Microbiol Biotechnol. 2019 Jan 28;31(1):154-162. doi: 10.4014/jmb.1910.10069.
9
Culture fermentation of in traditional pickled gherkins: Microbial development, chemical, biogenic amine and metabolite analysis.
J Food Sci Technol. 2019 Aug;56(8):3930-3939. doi: 10.1007/s13197-019-03866-8. Epub 2019 Jun 11.
10
Genomics of Lactic Acid Bacteria for Glycerol Dissimilation.
Mol Biotechnol. 2019 Aug;61(8):562-578. doi: 10.1007/s12033-019-00186-2.

本文引用的文献

1
Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.
Biotechnol Lett. 2012 Sep;34(9):1651-7. doi: 10.1007/s10529-012-0964-x. Epub 2012 May 25.
2
Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene.
Appl Environ Microbiol. 2012 Apr;78(7):2452-5. doi: 10.1128/AEM.07783-11. Epub 2012 Jan 20.
3
Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids.
Bioresour Technol. 2011 Aug;102(16):7486-93. doi: 10.1016/j.biortech.2011.05.008. Epub 2011 May 10.
4
Advances in ethanol production.
Curr Opin Biotechnol. 2011 Jun;22(3):312-9. doi: 10.1016/j.copbio.2011.04.012. Epub 2011 May 19.
5
Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.
Appl Microbiol Biotechnol. 2011 Mar;89(6):1741-50. doi: 10.1007/s00253-010-3011-7. Epub 2010 Dec 17.
6
Diversity of lactic acid bacteria of the bioethanol process.
BMC Microbiol. 2010 Nov 23;10:298. doi: 10.1186/1471-2180-10-298.
7
YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance.
J Ind Microbiol Biotechnol. 2011 Mar;38(3):431-9. doi: 10.1007/s10295-010-0787-5. Epub 2010 Jul 30.
8
Engineering cellulolytic ability into bioprocessing organisms.
Appl Microbiol Biotechnol. 2010 Jul;87(4):1195-208. doi: 10.1007/s00253-010-2660-x. Epub 2010 May 28.
9
A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering.
BMC Biotechnol. 2010 Mar 16;10:21. doi: 10.1186/1472-6750-10-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验